18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ROR nuclear receptors: structures, related diseases, and drug discovery

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The steroid and thyroid hormone receptor superfamily.

          Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

            T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat.

              T(H)-17 cells are interleukin 17 (IL-17)-secreting CD4+ T helper cells involved in autoimmune disease and mucosal immunity. In naive CD4+ T cells from mice, IL-17 is expressed in response to a combination of IL-6 or IL-21 and transforming growth factor-beta (TGF-beta) and requires induction of the nuclear receptor RORgammat. It has been suggested that the differentiation of human T(H)-17 cells is independent of TGF-beta and thus differs fundamentally from that in mice. We show here that TGF-beta, IL-1beta and IL-6, IL-21 or IL-23 in serum-free conditions were necessary and sufficient to induce IL-17 expression in naive human CD4+ T cells from cord blood. TGF-beta upregulated RORgammat expression but simultaneously inhibited its ability to induce IL-17 expression. Inflammatory cytokines relieved this inhibition and increased RORgammat-directed IL-17 expression. Other gene products detected in T(H)-17 cells after RORgammat induction included the chemokine receptor CCR6, the IL-23 receptor, IL-17F and IL-26. Our studies identify RORgammat as having a central function in the differentiation of human T(H)-17 cells from naive CD4+ T cells and suggest that similar cytokine pathways are involved in this process in mice and humans.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                January 2015
                15 December 2014
                : 36
                : 1
                : 71-87
                Affiliations
                [1 ]Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530, China
                [2 ]The Key Laboratory of Regenerative Biology, The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530, China
                Author notes
                Article
                aps2014120
                10.1038/aps.2014.120
                4571318
                25500868
                8a3186c3-dd27-4497-9171-4d92839af6b4
                Copyright © 2015 CPS and SIMM
                History
                : 09 August 2014
                : 08 October 2014
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                nuclear receptor,retinoic acid receptor-related orphan receptor,autoimmune disease,metabolic disorder,rational drug design

                Comments

                Comment on this article