6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infections have been considered to play a critical role in the pathogenesis of IgA nephropathy (IgAN) because synpharyngitic hematuria is a common feature in IgAN. However, how infections participate in this process is still debated. More recent studies have also revealed that the alteration of the gut microbiome exerts a profound effect on host immune responses, contributing to the etiology or progression of autoimmunity. Considering IgA as the first line of defense against bacterial and viral antigens, this review evaluates the relationships among intestinal infections, gut microbiome, and IgA for a better understanding of the pathogenesis of IgAN. Moreover, as a prototype of IgA immunity, we provide detailed clarification of IgAN pathogenesis to shed light on other diseases in which IgA plays a role. Finally, we discuss potential therapies focusing on microbes and mucosal immune responses in IgAN.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: not found
          • Article: not found

          IgA nephropathy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Links between diet, gut microbiota composition and gut metabolism.

            The gut microbiota and its metabolic products interact with the host in many different ways, influencing gut homoeostasis and health outcomes. The species composition of the gut microbiota has been shown to respond to dietary change, determined by competition for substrates and by tolerance of gut conditions. Meanwhile, the metabolic outputs of the microbiota, such as SCFA, are influenced both by the supply of dietary components and via diet-mediated changes in microbiota composition. There has been significant progress in identifying the phylogenetic distribution of pathways responsible for formation of particular metabolites among human colonic bacteria, based on combining cultural microbiology and sequence-based approaches. Formation of butyrate and propionate from hexose sugars, for example, can be ascribed to different bacterial groups, although propionate can be formed via alternative pathways from deoxy-sugars and from lactate by a few species. Lactate, which is produced by many gut bacteria in pure culture, can also be utilised by certain Firmicutes to form butyrate, and its consumption may be important for maintaining a stable community. Predicting the impact of diet upon such a complex and interactive system as the human gut microbiota not only requires more information on the component groups involved but, increasingly, the integration of such information through modelling approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine.

              The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                15 September 2020
                : 10
                : 25
                : 11462-11478
                Affiliations
                Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China.
                Author notes
                ✉ Corresponding author: Dr. Xu-Jie Zhou, MD & Ph.D. E-mail: zhouxujie@ 123456bjmu.edu.cn ; Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China. No. 8, Xishiku Street, Xicheng District, Beijing 100034, P.R China. Tel.: +86 10 83572388; Fax: +86 10 66551055.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov10p11462
                10.7150/thno.49778
                7545987
                33052226
                8a4d55c7-6c91-47bc-85f5-771e4461b965
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 22 June 2020
                : 30 August 2020
                Categories
                Review

                Molecular medicine
                iga nephropathy,mucosal immune response,infection,gut microbiome,therapy
                Molecular medicine
                iga nephropathy, mucosal immune response, infection, gut microbiome, therapy

                Comments

                Comment on this article