10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Regulation of Peripheral Metabolism by Gut-Derived Hormones

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

          The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss.

            Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Serotonin receptors.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                04 January 2019
                2018
                : 9
                : 754
                Affiliations
                [1] 1College of Medicine and Public Health, Flinders University , Adelaide, SA, Australia
                [2] 2Nutrition and Metabolism, South Australian Health and Medical Research Institute , Adelaide, SA, Australia
                [3] 3Adelaide Medical School, The University of Adelaide , Adelaide, SA, Australia
                Author notes

                Edited by: Maximilian Bielohuby, Sanofi, France

                Reviewed by: Yoshio Fujitani, Gunma University, Japan; Andreas Hoeflich, Leibniz Institute for Farm Animal Biology, Germany

                *Correspondence: Damien J. Keating damien.keating@ 123456flinders.edu.au

                This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2018.00754
                6328484
                30662430
                8a52e7ae-8821-434a-8e82-3676ec09ef17
                Copyright © 2019 Sun, Martin, Young and Keating.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 October 2018
                : 27 November 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 172, Pages: 11, Words: 9389
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                glp-1,pyy,serotonin,gip-glucose-dependent insulinotropic peptide,oxyntomodulin,ghrelin,enteroendocine cells,insulin-like peptide 5 (insl5)

                Comments

                Comment on this article