27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A systematic review of the cost-effectiveness of ultrasound in emergency care settings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The use of ultrasound (US) in emergency departments (ED) has become widespread. This includes both traditional US scans performed by radiology departments as well as point-of-care US (POCUS) performed by bedside clinicians. There has been significant interest in better understanding the appropriate use of imaging and where opportunities to enhance cost-effectiveness may exist. The purpose of this systematic review is to identify published evidence surrounding the cost-effectiveness of US in the ED and to grade the quality of that evidence.

          Methods

          We performed a systematic review of the literature following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Studies were considered for inclusion if they were: (1) economic evaluations, (2) studied the clinical use of ultrasound, and (3) took place in an emergency care setting. Included studies were critically appraised using the Consolidated Health Economic Evaluation Reporting Standards checklist.

          Results

          We identified 631 potentially relevant articles. Of these, 35 studies met all inclusion criteria and were eligible for data abstraction. In general, studies were supportive of the use of US. In particular, 11 studies formed a strong consensus that US enhanced cost-effectiveness in the investigation of pediatric appendicitis and 6 studies supported enhancements in the evaluation of abdominal trauma. Across the studies, weaknesses in methodology and reporting were common, such as lack of sensitivity analyses and inconsistent reporting of incremental cost-effectiveness ratios.

          Conclusions

          The body of existing evidence, though limited, generally demonstrates that the inclusion of US in emergency care settings allows for more cost-effective care. The most definitive evidence for improvements in cost-effectiveness surround the evaluation of pediatric appendicitis, followed by the evaluation of abdominal trauma. POCUS outside of trauma has had mixed results.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.

          Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement-a reporting guideline published in 1999-there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (www.prisma-statement.org) should be helpful resources to improve reporting of systematic reviews and meta-analyses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Point-of-care ultrasonography.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000-2016

              What were the trends in medical imaging from 2000 through 2016 in the United States and Ontario, Canada? In this retrospective cohort study of 135 million imaging examinations conducted in 7 US integrated health care systems and in Ontario, annual growth in imaging rates among US adults and older adults slowed over time for computed tomography (CT; from an 11.6% annual percentage increase among adults and 9.5% among older adults in 2000-2006 to 3.7% among adults in 2013-2016 and 5.2% among older adults in 2014-2016) and for magnetic resonance imaging (MRI; from 11.4% in 2000-2004 in adults and 11.3% in 2000-2005 in older adults to 1.3% in 2007-2016 in adults and 2.2% in 2005-2016 in older adults). Patterns in Ontario were similar. Among children, annual growth for CT stabilized or declined (United States: from 10.1% in 2000-2005 to 0.8% in 2013-2016; Ontario: from 3.3% in 2000-2006 to −5.3% in 2006-2016), but patterns for MRI were similar to adults. Changes in annual growth in ultrasound were smaller among adults and children in the United States and Ontario. From 2000 to 2016 in 7 US integrated health care systems and Ontario, CT and MRI rates continued to increase among adults, but at a slower pace in more recent years compared with earlier years; in children, CT rates stabilized or declined in recent years. Medical imaging increased rapidly from 2000 to 2006, but trends in recent years have not been analyzed. To evaluate recent trends in medical imaging. Retrospective cohort study of patterns of medical imaging between 2000 and 2016 among 16 million to 21 million patients enrolled annually in 7 US integrated and mixed-model insurance health care systems and for individuals receiving care in Ontario, Canada. Calendar year and country (United States vs Canada). Use of computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine imaging. Annual and relative imaging rates by imaging modality, country, and age (children [<18 years], adults [18-64 years], and older adults [≥65 years]). Overall, 135 774 532 imaging examinations were included; 5 439 874 (4%) in children, 89 635 312 (66%) in adults, and 40 699 346 (30%) in older adults. Among adults and older adults, imaging rates were significantly higher in 2016 vs 2000 for all imaging modalities other than nuclear medicine. For example, among older adults, CT imaging rates were 428 per 1000 person-years in 2016 vs 204 per 1000 in 2000 in US health care systems and 409 per 1000 vs 161 per 1000 in Ontario; for MRI, 139 per 1000 vs 62 per 1000 in the United States and 89 per 1000 vs 13 per 1000 in Ontario; and for ultrasound, 495 per 1000 vs 324 per 1000 in the United States and 580 per 1000 vs 332 per 1000 in Ontario. Annual growth in imaging rates among US adults and older adults slowed over time for CT (from an 11.6% annual percentage increase among adults and 9.5% among older adults in 2000-2006 to 3.7% among adults in 2013-2016 and 5.2% among older adults in 2014-2016) and for MRI (from 11.4% in 2000-2004 in adults and 11.3% in 2000-2005 in older adults to 1.3% in 2007-2016 in adults and 2.2% in 2005-2016 in older adults). Patterns in Ontario were similar. Among children, annual growth for CT stabilized or declined (United States: from 10.1% in 2000-2005 to 0.8% in 2013-2016; Ontario: from 3.3% in 2000-2006 to −5.3% in 2006-2016), but patterns for MRI were similar to adults. Changes in annual growth in ultrasound were smaller among adults and children in the United States and Ontario compared with CT and MRI. Nuclear medicine imaging declined in adults and children after 2006. From 2000 to 2016 in 7 US integrated and mixed-model health care systems and in Ontario, rates of CT and MRI use continued to increase among adults, but at a slower pace in more recent years. In children, imaging rates continued to increase except for CT, which stabilized or declined in more recent periods. Whether the observed imaging utilization was appropriate or was associated with improved patient outcomes is unknown. This study evaluates trends in utilization of computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine imaging between 2000 and 2016 in 7 US health care networks and in Ontario, Canada.
                Bookmark

                Author and article information

                Contributors
                nrisko1@jhmi.edu
                Journal
                Ultrasound J
                Ultrasound J
                The Ultrasound Journal
                Springer International Publishing (Cham )
                2524-8987
                9 March 2021
                9 March 2021
                December 2021
                : 13
                : 16
                Affiliations
                [1 ]GRID grid.413529.8, ISNI 0000 0004 0430 7173, Department of Emergency Medicine, , Highland Hospital-Alameda Health System, ; 1411 E. 31st Street, QIC 22123, Oakland, CA 94602 USA
                [2 ]GRID grid.21107.35, ISNI 0000 0001 2171 9311, Department of Emergency Medicine, , Johns Hopkins University School of Medicine, ; 1800 Orleans St, Baltimore, MD 21287 USA
                Author information
                http://orcid.org/0000-0002-7556-2804
                Article
                216
                10.1186/s13089-021-00216-8
                7943664
                33687607
                8a548076-cccb-47ea-b62d-e5b95aedb87b
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 September 2020
                : 19 February 2021
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                ultrasound,emergency medicine,cost-effectiveness,radiology,health economics

                Comments

                Comment on this article