16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential Impact of Multi-Walled Carbon Nanotubes Exposure to the Seedling Stage of Selected Plant Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phytotoxicity is a significant consideration in understanding the potential environmental impact of nanoparticles. Abundant experimental data have shown that multi-walled carbon nanotubes (MWNTs) are toxic to plants, but the potential impacts of exposure remain unclear. The objective of the present study was to evaluate possible phytotoxicity of MWNTs at 0, 20, 200, 1000, and 2000 mg/L with red spinach, lettuce, rice, cucumber, chili, lady’s finger, and soybean, based on root and shoot growth, cell death, and electrolyte leakage at the seedling stage. After 15 days of hydroponic culture, the root and shoot lengths of red spinach, lettuce, and cucumber were significantly reduced following exposure to 1000 mg/L and 2000 mg/L MWNTs. Similar toxic effects occurred regarding cell death and electrolyte leakage. Red spinach and lettuce were most sensitive to MWNTs, followed by rice and cucumber. Very little or no toxic effects were observed for chili, lady’s finger, and soybean.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Book: not found

          The water culture method of growing plants without soil

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE.

            Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils. The oxidants are not only direct protective agents, but H2O2 also functions as a substrate for oxidative cross-linking in the cell wall, as a threshold trigger for hypersensitive cell death, and as a diffusible signal for induction of cellular protectant genes in surrounding cells. Activation of the oxidative burst is a central component of a highly amplified and integrated signal system, also involving salicylic acid and perturbations of cytosolic Ca2+, which underlies the expression of disease-resistance mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.

              Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. We report here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants such as glutathione S-transferase and glutathione peroxidase. Thus, H2O2 from the oxidative burst plays a key role in the orchestration of a localized hypersensitive response during the expression of plant disease resistance.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                31 March 2014
                June 2014
                : 4
                : 2
                : 203-221
                Affiliations
                Laboratory of Environmental Medical Chemistry, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mails: refi@ 123456ees.hokudai.ac.jp (R.I.); hu@ 123456ees.hokudai.ac.jp (B.F.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: parvinchy@ 123456ees.hokudai.ac.jp ; Tel.: +81-11-706-9235.
                Article
                nanomaterials-04-00203
                10.3390/nano4020203
                5304672
                28344219
                8a63824b-e6cc-4a08-bf22-9b4269e84428
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 07 February 2014
                : 22 March 2014
                : 22 March 2014
                Categories
                Article

                phytotoxicity,multi-walled carbon nanotubes (mwnts),seedling stage,cell death,electrolyte leakage

                Comments

                Comment on this article