151
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disruption of the Expression of a Non-Coding RNA Significantly Impairs Cellular Differentiation in Toxoplasma gondii

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protozoan parasite Toxoplasma gondii is an important human and veterinary pathogen. Asexual replication of T. gondii in humans and intermediate hosts is characterized by two forms: rapidly growing “tachyzoites” and latent “bradyzoite” tissue cysts. Tachyzoites are responsible for acute illness and congenital neurological birth defects, while the more slowly dividing bradyzoite form can remain latent within the tissues for many years, representing a threat to immunocompromised patients. We have developed a genetic screen to identify regulatory genes that control parasite differentiation and have isolated mutants that fail to convert to bradyzoites. One of these mutants has an insertion disrupting a locus that encodes a developmentally regulated non-coding RNA transcript, named Tg-ncRNA-1. Microarray hybridizations suggest that Tg-ncRNA-1 is involved in the early steps of bradyzoite differentiation. Since Tg-ncRNA-1 does not contain an open reading frame, we used the algorithm Coding Potential Calculator (CPC) that evaluates the protein-coding potential of a transcript, to classify Tg-ncRNA-1. The CPC results strongly indicate that Tg-ncRNA-1 is a non-coding RNA (ncRNA). Interestingly, a previously generated mutant also contains an insertion in Tg-ncRNA-1. We show that both mutants have a decreased ability to form bradyzoites, and complementation of both mutants with wild-type Tg-ncRNA-1 restores the ability of the parasites to differentiate. It has been shown that an important part of bradyzoite differentiation is transcriptionally controlled, but this is the first time that a non-coding RNA is implicated in this process.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Noncoding RNA in development.

          Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The development and biology of bradyzoites of Toxoplasma gondii.

              Toxoplasma gondii is a protozoan parasite of mammals and birds that is an important human pathogen. Infection with this Apicomplexan parasite results in its dissemination throughout its host via the tachyzoite life-stage. After dissemination these tachyzoites differentiate into bradyzoites within cysts that remain latent. These bradyzoites can transform back into tachyzoites and in immunosupressed individuals this often results in symptomatic disease. Both tachyzoites and bradyzoites develop in tissue culture and thus this crucial differentiation event can be studied. Recent advances in the genetic manipulation of T. gondii have expanded the molecular tools that can be applied to studies on bradyzoite differentiation. Evidence is accumulating that this differentiation event is stress mediated and may share common pathways with other stress-induced differentiation events in other eukaryotic organisms. Study of the stress response and signaling pathways are areas of active research in this organism. In addition, characterization of unique bradyzoite-specific structures, such as the cyst wall, should lead to a further understanding of T. gondii biology. This review focuses on the biology and development of bradyzoites and current approaches to the study of the tachyzoite to bradyzoite differentiation process.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                January 2013
                28 December 2012
                : 14
                : 1
                : 611-624
                Affiliations
                Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Dr. Burlington, VT 05405, USA; E-Mails: vkpatil13@ 123456gmail.com (V.P.); pamela.lescault@ 123456uvm.edu (P.J.L.); dlirussi@ 123456uvm.edu (D.L.); abthomps@ 123456uvm.edu (A.B.T.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: mmatrajt@ 123456uvm.edu ; Tel.: +1-802-656-3671; Fax: +1-802-656-8749.
                Article
                ijms-14-00611
                10.3390/ijms14010611
                3565285
                23275028
                8a7e148d-4357-4776-819b-646692d9eefc
                © 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 02 November 2012
                : 14 December 2012
                : 18 December 2012
                Categories
                Article

                Molecular biology
                t. gondii development,non-coding rna,bradyzoites
                Molecular biology
                t. gondii development, non-coding rna, bradyzoites

                Comments

                Comment on this article