18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs) might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina), a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological, behavioral, and biochemical aspects of insect hydrocarbons.

          This review covers selected literature from 1982 to the present on some of the ecological, behavioral, and biochemical aspects of hydrocarbon use by insects and other arthropods. Major ecological and behavioral topics are species- and gender-recognition, nestmate recognition, task-specific cues, dominance and fertility cues, chemical mimicry, and primer pheromones. Major biochemical topics include chain length regulation, mechanism of hydrocarbon formation, timing of hydrocarbon synthesis and transport, and biosynthesis of volatile hydrocarbon pheromones of Lepidoptera and Coleoptera. In addition, a section is devoted to future research needs in this rapidly growing area of science.
            • Record: found
            • Abstract: found
            • Article: not found

            Ancestral monogamy shows kin selection is key to the evolution of eusociality.

            Close relatedness has long been considered crucial to the evolution of eusociality. However, it has recently been suggested that close relatedness may be a consequence, rather than a cause, of eusociality. We tested this idea with a comparative analysis of female mating frequencies in 267 species of eusocial bees, wasps, and ants. We found that mating with a single male, which maximizes relatedness, is ancestral for all eight independent eusocial lineages that we investigated. Mating with multiple males is always derived. Furthermore, we found that high polyandry (>2 effective mates) occurs only in lineages whose workers have lost reproductive totipotency. These results provide the first evidence that monogamy was critical in the evolution of eusociality, strongly supporting the prediction of inclusive fitness theory.
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees.

              The stinging wasps (Hymenoptera: Aculeata) are an extremely diverse lineage of hymenopteran insects, encompassing over 70,000 described species and a diversity of life history traits, including ectoparasitism, cleptoparasitism, predation, pollen feeding (bees [Anthophila] and Masarinae), and eusociality (social vespid wasps, ants, and some bees) [1]. The most well-studied lineages of Aculeata are the ants, which are ecologically dominant in most terrestrial ecosystems [2], and the bees, the most important lineage of angiosperm-pollinating insects [3]. Establishing the phylogenetic affinities of ants and bees helps us understand and reconstruct patterns of social evolution as well as fully appreciate the biological implications of the switch from carnivory to pollen feeding (pollenivory). Despite recent advancements in aculeate phylogeny [4-11], considerable uncertainty remains regarding higher-level relationships within Aculeata, including the phylogenetic affinities of ants and bees [5-7]. We used ultraconserved element (UCE) phylogenomics [7, 12] to resolve relationships among stinging-wasp families, gathering sequence data from >800 UCE loci and 187 samples, including 30 out of 31 aculeate families. We analyzed the 187-taxon dataset using multiple analytical approaches, and we evaluated several alternative taxon sets. We also tested alternative hypotheses for the phylogenetic positions of ants and bees. Our results present a highly supported phylogeny of the stinging wasps. Most importantly, we find unequivocal evidence that ants are the sister group to bees+apoid wasps (Apoidea) and that bees are nested within a paraphyletic Crabronidae. We also demonstrate that taxon choice can fundamentally impact tree topology and clade support in phylogenomic inference.

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                14 June 2017
                2017
                : 11
                : 48
                Affiliations
                [1] 1Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris Saclay Gif-sur-Yvette, France
                [2] 2UMR 1065 Santé et Agroécologie du Vignoble, INRA, Université de Bordeaux, ISVV Villenave d'Ornon, France
                Author notes

                Edited by: Pablo Blinder, Tel Aviv University, Israel

                Reviewed by: Heikki Helanterä, University of Helsinki, Finland; Patrizia d'Ettorre, Paris 13 University, France

                *Correspondence: Jean-Christophe Sandoz sandoz@ 123456egce.cnrs-gif.fr
                Article
                10.3389/fnana.2017.00048
                5469875
                28659767
                8a8d2f14-984e-439f-9905-51ab7717fbea
                Copyright © 2017 Couto, Mitra, Thiéry, Marion-Poll and Sandoz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 December 2016
                : 26 May 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 57, Pages: 12, Words: 7926
                Funding
                Funded by: Conseil Régional, Île-de-France 10.13039/501100003990
                Award ID: DIM R2DS, project 2011-05
                Categories
                Neuroscience
                Original Research

                Neurosciences
                brain evolution,eusociality,social insect,cuticular hydrocarbons,antennal lobe,olfaction
                Neurosciences
                brain evolution, eusociality, social insect, cuticular hydrocarbons, antennal lobe, olfaction

                Comments

                Comment on this article

                Related Documents Log