5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men.

      The Journal of Clinical Endocrinology and Metabolism
      Adult, Blood Glucose, metabolism, C-Peptide, blood, Deuterium, Dietary Carbohydrates, Energy Intake, Epinephrine, Glucagon, Gluconeogenesis, Glucose, administration & dosage, Glycogen, Hormones, Humans, Hydrocortisone, Infusions, Intravenous, Insulin, Male, Middle Aged, Norepinephrine, Reference Values

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To evaluate the effect of dietary carbohydrate content on postabsorptive glucose metabolism, we quantified gluconeogenesis and glycogenolysis after 11 days of high carbohydrate (85% carbohydrate), control (44% carbohydrate), and very low carbohydrate (2% carbohydrate) diets in six healthy men. Diets were eucaloric and provided 15% of energy as protein. Postabsorptive glucose production was measured by infusion of [6,6-2H2]glucose, and fractional gluconeogenesis was measured by ingestion of 2H2O. Postabsorptive glucose production rates were 13.0 +/- 0.7, 11.4 +/- 0.4, and 9.7 +/- 0.4 micromol/kg x min after high carbohydrate, control, and very low carbohydrate diets, respectively (P < 0.001 among the three diets). Gluconeogenesis was about 14% higher after the very low carbohydrate diet (6.3 +/- 0.2 micromol/kg x min; P = 0.001) compared to the control diet, but was not different between the high carbohydrate and control diets (5.5 +/- 0.3 vs. 5.5 +/- 0.2 micromol/kg x min). The rates of glycogenolysis were 7.5 +/- 0.5, 5.9 +/- 0.3, and 3.4 +/- 0.3 micromol/kg x min, respectively (P < 0.001 among the three diets). We conclude that under eucaloric conditions in healthy subjects, dietary carbohydrate content affects the rate of postabsorptive glucose production mainly by modulation of glycogenolysis. In contrast, dietary carbohydrate content affects the postabsorptive rate of gluconeogenesis minimally, as evidenced by only a slight increase in gluconeogenesis during severe carbohydrate restriction.

          Related collections

          Author and article information

          Comments

          Comment on this article