39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering the Rhizosphere

      , ,
      Trends in Plant Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochar as a sorbent for contaminant management in soil and water: a review.

            Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

              The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
                Bookmark

                Author and article information

                Journal
                Trends in Plant Science
                Trends in Plant Science
                Elsevier BV
                13601385
                March 2016
                March 2016
                : 21
                : 3
                : 266-278
                Article
                10.1016/j.tplants.2016.01.002
                26818718
                8aaf881d-8461-4092-9c32-73f30721c208
                © 2016
                History

                Comments

                Comment on this article