10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bradykinin regulates cell growth and migration in cultured human cardiac c-Kit+ progenitor cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bradykinin is a well-known endogenous vasoactive peptide. The present study investigated the bradykinin receptor expression in human cardiac c-Kit + progenitor cells and the potential role of bradykinin in regulating cell cycling progression and mobility. It was found that mRNA and protein of bradykinin type 2 receptors, but not bradykinin type 1 receptors, were abundant in cultured human cardiac c-Kit + progenitor cells. Bradykinin (1-10 nM) stimulated cell growth and migration in a concentration-dependent manner. The increase of cell proliferation was related to promoting G0/G1 transition into G2/M and S phase. Western blots revealed that bradykinin significantly increased pAkt and pERK1/2 as well as cyclin D1, which were countered by HOE140 (an antagonist of bradykinin type 2 receptors) or by silencing bradykinin type 2 receptors. The increase of pAkt, pERK1/2 and cyclin D1 by bradykinin was prevented by the PI3K inhibitor Ly294002, the PLC inhibitors U73122 and neomycin, and/or the PKC inhibitor chelerythrine and the MAPK inhibitor PD98059. Our results demonstrate the novel information that bradykinin promotes cell cycling progression and migration in human cardiac c-Kit + progenitor cells via activating PI3K, PLC, PKC, cyclin D1, pERK1/2, and pAkt.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance.

          SCIPIO is a first-in-human, phase 1, randomized, open-label trial of autologous c-kit(+) cardiac stem cells (CSCs) in patients with heart failure of ischemic etiology undergoing coronary artery bypass grafting (CABG). In the present study, we report the surgical aspects and interim cardiac magnetic resonance (CMR) results. A total of 33 patients (20 CSC-treated and 13 control subjects) met final eligibility criteria and were enrolled in SCIPIO. CSCs were isolated from the right atrial appendage harvested and processed during surgery. Harvesting did not affect cardiopulmonary bypass, cross-clamp, or surgical times. In CSC-treated patients, CMR showed a marked increase in both LVEF (from 27.5 ± 1.6% to 35.1 ± 2.4% [P=0.004, n=8] and 41.2 ± 4.5% [P=0.013, n=5] at 4 and 12 months after CSC infusion, respectively) and regional EF in the CSC-infused territory. Infarct size (late gadolinium enhancement) decreased after CSC infusion (by manual delineation: -6.9 ± 1.5 g [-22.7%] at 4 months [P=0.002, n=9] and -9.8 ± 3.5 g [-30.2%] at 12 months [P=0.039, n=6]). LV nonviable mass decreased even more (-11.9 ± 2.5 g [-49.7%] at 4 months [P=0.001] and -14.7 ± 3.9 g [-58.6%] at 12 months [P=0.013]), whereas LV viable mass increased (+11.6 ± 5.1 g at 4 months after CSC infusion [P=0.055] and +31.5 ± 11.0 g at 12 months [P=0.035]). Isolation of CSCs from cardiac tissue obtained in the operating room is feasible and does not alter practices during CABG surgery. CMR shows that CSC infusion produces a striking improvement in both global and regional LV function, a reduction in infarct size, and an increase in viable tissue that persist at least 1 year and are consistent with cardiac regeneration. This study is registered with clinicaltrials.gov, trial number NCT00474461.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy.

            Relevant preclinical models are necessary for further mechanistic and translational studies of c-kit+ cardiac stem cells (CSCs). The present study was undertaken to determine whether intracoronary CSCs are beneficial in a porcine model of chronic ischemic cardiomyopathy. Pigs underwent a 90-minute coronary occlusion followed by reperfusion. Three months later, autologous CSCs (n=11) or vehicle (n=10) were infused into the infarct-related artery. At this time, all indices of left ventricular (LV) function were similar in control and CSC-treated pigs, indicating that the damage inflicted by the infarct in the 2 groups was similar; 1 month later, however, CSC-treated pigs exhibited significantly greater LV ejection fraction (echocardiography) (51.7±2.0% versus 42.9±2.3%, P<0.01), systolic thickening fraction in the infarcted LV wall, and maximum LV dP/dt, as well as lower LV end-diastolic pressure. Confocal microscopy showed clusters of small α-sarcomeric actin-positive cells expressing Ki67 in the scar of treated pigs, consistent with cardiac regeneration. The origin of these cycling myocytes from the injected cells was confirmed in 4 pigs that received enhanced green fluorescent protein -labeled CSCs, which were positive for the cardiac markers troponin I, troponin T, myosin heavy chain, and connexin-43. Some engrafted CSCs also formed vascular structures and expressed α-smooth muscle actin. Intracoronary infusion of autologous CSCs improves regional and global LV function and promotes cardiac and vascular regeneration in pigs with old myocardial infarction (scar). The results mimic those recently reported in humans (Stem Cell Infusion in Patients with Ischemic CardiOmyopathy [SCIPIO] trial) and establish this porcine model of ischemic cardiomyopathy as a useful and clinically relevant model for studying CSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice.

              Although transplantation of c-kit+ cardiac stem cells (CSCs) alleviates post-myocardial infarction left ventricular dysfunction, there are no reliable methods that enable measurement of the absolute number of CSCs that persist in the recipient heart. To overcome this limitation, we developed a highly sensitive and accurate method to quantify the absolute number of murine CSCs after transplantation. This method has two unique features: (1) real-time PCR-based detection of a novel male-specific, multiple-copy gene, Rbmy, which significantly increases the sensitivity of detection of male donor cells in a female recipient, and (2) an internal standard, which permits quantification of the absolute number of CSCs as well as the total number of cells in the recipient organ. Female C57BL/6 mice underwent coronary occlusion and reperfusion; 2 days later, 10(5) male mouse CSCs were injected intramyocardially. Tissues were analyzed by real-time PCR at serial time points. In the risk region, >75 % of CSCs present at 5 min were lost in the ensuing 24 h; only 7.6 ± 2.1 % of the CSCs present at 5 min could still be found at 7 days after transplantation and only 2.8 ± 0.5 % (i.e., 1,224 ± 230 cells/heart) at 35 days. Thus, even after direct intramyocardial injection, the total number of CSCs that remain in the murine heart is minimal (at 24 h, ~10 % of the cells injected; at 35 days, ~1 %). This new quantitative method of stem cell detection, which enables measurement of absolute cell number, should be useful to optimize cell-based therapies, not only for CSCs but also for other stem cells and other organs.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 February 2017
                12 January 2017
                : 8
                : 7
                : 10822-10835
                Affiliations
                1 Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
                2 Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
                Author notes
                Correspondence to: Yan Wang, wy@ 123456medmail.com.cn
                Article
                14609
                10.18632/oncotarget.14609
                5355226
                28099911
                8ab37bc8-107f-49e4-b752-5444ba0993c7
                Copyright: © 2017 Li et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 June 2016
                : 6 January 2017
                Categories
                Research Paper: Pathology

                Oncology & Radiotherapy
                bradykinin,bradykinin receptor 2,human cardiac c-kit+,progenitor cells,proliferation,migration,pathology section

                Comments

                Comment on this article