3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Discovery of Snake Venom Disintegrins to A Safer Therapeutic Antithrombotic Agent

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Snake venoms affect blood coagulation and platelet function in diverse ways. Some venom components inhibit platelet function, while other components induce platelet aggregation. Among the platelet aggregation inhibitors, disintegrins have been recognized as unique and potentially valuable tools for examining cell–matrix and cell–cell interactions and for the development of antithrombotic and antiangiogenic agents according to their anti-adhesive and anti-migration effect on tumor cells and antiangiogenesis activities. Disintegrins represent a family of low molecular weight, cysteine-rich, Arg-Gly-Asp(RGD)/Lys-Gly-Asp(KGD)-containing polypeptides, which inhibit fibrinogen binding to integrin αIIbβ3 (i.e., platelet glycoprotein IIb/IIIa), as well as ligand binding to integrins αvβ3, and α5β1 expressed on cells (i.e., fibroblasts, tumor cells, and endothelial cells). This review focuses on the current efforts attained from studies using disintegrins as a tool in the field of arterial thrombosis, angiogenesis, inflammation, and tumor metastasis, and briefly describes their potential therapeutic applications and side effects in integrin-related diseases. Additionally, novel R(K)GD-containing disintegrin TMV-7 mutants are being designed as safer antithrombotics without causing thrombocytopenia and bleeding.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Integrins: a family of cell surface receptors.

          R O Hynes (1987)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition and signaling by toll-like receptors.

            Toll-like receptors (TLRs) are transmembrane proteins that detect invading pathogens by binding conserved, microbially derived molecules and that induce signaling cascades for proinflammatory gene expression. A critical component of the innate immune system, TLRs utilize leucine-rich-repeat motifs for ligand binding and a shared cytoplasmic domain to recruit the adaptors MyD88, TRIF, TIRAP, and/or TRAM for downstream signaling. Despite significant domain conservation, TLRs induce gene programs that lead not only to the robust production of general proinflammatory mediators but also to the production of unique effectors, which provide pathogen-tailored immune responses. Here we review the mechanisms by which TLRs recognize pathogens and induce distinct signaling cascades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management.

              Drug-induced immune thrombocytopenia (DITP) can be triggered by a wide range of medications. Although many cases of DITP are mild, some are characterized by life-threatening bleeding symptoms. The pathogenesis of DITP is complex, in that at least six different mechanisms have been proposed by which drug-induced antibodies can promote platelet destruction. It is possible in many cases to identify antibodies that react with platelets in the presence of the sensitizing drug, but the required testing is technically demanding and not widely available. Therefore, a decision on whether to discontinue an implicated medication in a patient suspected of having DITP must be made on clinical grounds. An algorithm is available that can be helpful in assessing the likelihood that a particular drug caused thrombocytopenia, but the most important aspects of patient management are a high index of suspicion and a careful history of drug exposure in an individual who presents with acute, often severe thrombocytopenia of unknown etiology. How drugs induce platelet-reactive antibodies and how, once formed, the antibodies cause platelet destruction following exposure to the drug is poorly understood. Further studies to address these issues and characterize more completely the range of drugs and drug metabolites that can cause DITP are needed.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                26 June 2019
                July 2019
                : 11
                : 7
                : 372
                Affiliations
                [1 ]Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
                [2 ]Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
                Author notes
                [* ]Correspondence: turfu@ 123456ntu.edu.tw ; Tel.: +886-2-2312-3456 (ext.88332)
                Author information
                https://orcid.org/0000-0002-5855-9785
                Article
                toxins-11-00372
                10.3390/toxins11070372
                6669693
                31247995
                8ab7979b-ecc8-424d-978e-efeda487bdbd
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 June 2019
                : 24 June 2019
                Categories
                Review

                Molecular medicine
                snake venom proteins,disintegrins,antiplatelet agent,arterial thrombosis,angiogenesis,septic inflammation

                Comments

                Comment on this article