+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokine storm and leukocyte changes in mild versus severe SARS‐CoV‐2 infection: Review of 3939 COVID‐19 patients in China and emerging pathogenesis and therapy concepts

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Clinical evidence indicates that the fatal outcome observed with severe acute respiratory syndrome‐coronavirus‐2 infection often results from alveolar injury that impedes airway capacity and multi‐organ failure—both of which are associated with the hyperproduction of cytokines, also known as a cytokine storm or cytokine release syndrome. Clinical reports show that both mild and severe forms of disease result in changes in circulating leukocyte subsets and cytokine secretion, particularly IL‐6, IL‐1β, IL‐10, TNF, GM‐CSF, IP‐10 (IFN‐induced protein 10), IL‐17, MCP‐3, and IL‐1ra. Not surprising, therapies that target the immune response and curtail the cytokine storm in coronavirus 2019 (COVID‐19) patients have become a focus of recent clinical trials. Here we review reports on leukocyte and cytokine data associated with COVID‐19 disease in 3939 patients in China and describe emerging data on immunopathology. With an emphasis on immune modulation, we also look at ongoing clinical studies aimed at blocking proinflammatory cytokines; transfer of immunosuppressive mesenchymal stem cells; use of convalescent plasma transfusion; as well as immunoregulatory therapy and traditional Chinese medicine regimes. In examining leukocyte and cytokine activity in COVID‐19, we focus in particular on how these levels are altered as the disease progresses (neutrophil NETosis, macrophage, T cell response, etc.) and proposed consequences to organ pathology (coagulopathy, etc.). Viral and host interactions are described to gain further insight into leukocyte biology and how dysregulated cytokine responses lead to disease and/or organ damage. By better understanding the mechanisms that drive the intensity of a cytokine storm, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.


          Reviews clinical data on leukocyte and cytokine changes during mild‐to‐severe infection, including a detailed overview of current therapy strategies targeting the cytokine storm.

          Related collections

          Most cited references 87

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            • Record: found
            • Abstract: found
            • Article: not found

            Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

            Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of serum cytokines in patients with severe acute respiratory syndrome.

               R. Sun,  Y Z Zhan,  Jack Zhang (2004)
              Severe acute respiratory syndrome (SARS) is an acute infectious disease of the respiratory system. Although a novel coronavirus has been identified as the causative agent of SARS, the pathogenic mechanisms of SARS are not understood. In this study, sera were collected from healthy donors, patients with SARS, patients with severe SARS, and patients with SARS in convalescence. The serum concentrations of interleukin-1 (IL-1), IL-4, IL-6, IL-8, IL-10, tumor growth factor beta (TGF-beta), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were measured by enzyme-linked immunosorbent assays (ELISA). The concentrations of IL-1 and TNF-alpha were not significantly different in different groups. The IL-6 concentration was increased in SARS patients and was significantly elevated in severe SARS patients, but the IL-6 concentrations were similar in convalescent patients and control subjects, suggesting that there was a positive relationship between the serum IL-6 concentration and SARS severity. The concentrations of IL-8 and TGF-beta were decreased in SARS patients and significantly reduced in severe SARS patients, but they were comparable in convalescent SARS patients and control subjects, suggesting that there was a negative relationship between the IL-8 and TGF-beta concentrations and SARS severity. The concentrations of IFN-gamma, IL-4, and IL-10 showed significant changes only in convalescent SARS patients. The IFN-gamma and IL-4 levels were decreased, while the levels of IL-10 were increased, and the differences between convalescent SARS patients and other patient groups were statistically significant. These results suggest that there are different immunoregulatory events during and after SARS and may contribute to our understanding of the pathogenesis of this syndrome.

                Author and article information

                J Leukoc Biol
                J. Leukoc. Biol
                Journal of Leukocyte Biology
                John Wiley and Sons Inc. (Hoboken )
                13 June 2020
                [ 1 ] State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR China
                [ 2 ] Vaccine and Immunotherapy Center The Wistar Institute Philadelphia Pennsylvania USA
                Author notes
                [* ] Correspondence

                Prof. Luis J. Montaner, Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Room 480, Philadelphia, PA 19104, USA.

                E‐mail: montaner@

                Prof. Xin Chen, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.

                E‐mail: xchen@

                © 2020 The Authors. Journal of Leukocyte Biology published by Wiley Periodicals, Inc. on behalf of the Society for Leukocyte Biology

                This is an open access article under the terms of the License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                Page count
                Figures: 3, Tables: 2, Pages: 25, Words: 16429
                Frontline Review
                Frontline Review
                Custom metadata
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.4 mode:remove_FC converted:29.06.2020


                sars‐cov‐2, leukocyte, immunotherapy, cytokine storm, covid‐19


                Comment on this article