67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glucaric acid is a high-value-added chemical that can be used in various fields. Because chemical oxidation of glucose to produce glucaric acid is not environmentally friendly, microbial production has attracted increasing interest recently. Biological pathways to synthesize glucaric acid from glucose in both Escherichia coli and Saccharomyces cerevisiae by co-expression of genes encoding myo-inositol-1-phosphate synthase (Ino1), myo-inositol oxygenase (MIOX), and uronate dehydrogenase (Udh) have been constructed. However, low activity and instability of MIOX from Mus musculus was proved to be the bottleneck in this pathway.

          Results

          A more stable miox4 from Arabidopsis thaliana was chosen in the present study. In addition, high copy delta-sequence integration of miox4 into the S. cerevisiae genome was performed to increase its expression level further. Enzymatic assay and quantitative real-time PCR analysis revealed that delta-sequence-based integrative expression increased MIOX4 activity and stability, thus increasing glucaric acid titer about eight times over that of episomal expression. By fed-batch fermentation supplemented with 60 mM (10.8 g/L) inositol, the multi-copy integrative expression S. cerevisiae strain produced 6 g/L (28.6 mM) glucaric acid from myo-inositol, the highest titer that had been ever reported in S. cerevisiae.

          Conclusions

          In this study, glucaric acid titer was increased to 6 g/L in S. cerevisiae by integrating the miox4 gene from A. thaliana and the udh gene from Pseudomonas syringae into the delta sequence of genomes. Delta-sequence-based integrative expression increased both the number of target gene copies and their stabilities. This approach could be used for a wide range of metabolic pathway engineering applications with S. cerevisiae.

          Electronic supplementary material

          The online version of this article (10.1186/s12934-018-0914-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.

          An expression system for Saccharomyces cerevisiae (Sc) has been developed which, depending on the chosen vector, allows the constitutive expression of proteins at different levels over a range of three orders of magnitude and in different genetic backgrounds. The expression system is comprised of cassettes composed of a weak CYC1 promoter, the ADH promoter or the stronger TEF and GPD promoters, flanked by a cloning array and the CYC1 terminator. The multiple cloning array based on pBIISK (Stratagene) provides six to nine unique restriction sites, which facilitates the cloning of genes and allows for the directed cloning of cDNAs by the widely used ZAP system (Stratagene). Expression cassettes were placed into both the centromeric and 2 mu plasmids of the pRS series [Sikorski and Hieter, Genetics 122 (1989) 19-27; Christianson et al., Gene 110 (1992) 119-122] containing HIS3, TRP1, LEU2 or URA3 markers. The 32 expression vectors created by this strategy provide a powerful tool for the convenient cloning and the controlled expression of genes or cDNAs in nearly every genetic background of the currently used Sc strains.
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals.

            Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.
              • Record: found
              • Abstract: found
              • Article: not found

              myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis.

              Two biosynthetic pathways for ascorbate (l-ascorbic acid [AsA]; vitamin C) in plants are presently known, the mannose/l-galactose pathway and an l-GalUA pathway. Here, we present molecular and biochemical evidence for a possible biosynthetic route using myo-inositol (MI) as the initial substrate. A MI oxygenase (MIOX) gene was identified in chromosome 4 (miox4) of Arabidopsis ecotype Columbia, and its enzymatic activity was confirmed in bacterially expressed recombinant protein. Miox4 was primarily expressed in flowers and leaves of wild-type Arabidopsis plants, tissues with a high concentration of AsA. Ascorbate levels increased 2- to 3-fold in homozygous Arabidopsis lines overexpressing the miox4 open reading frame, thus suggesting the role of MI in AsA biosynthesis and the potential for using this gene for the agronomic and nutritional enhancement of crops.

                Author and article information

                Contributors
                447436580@qq.com
                2074207903@qq.com
                yunyingzhao@jiangnan.edu.cn
                dengyu@jiangnan.edu.cn
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                5 May 2018
                5 May 2018
                2018
                : 17
                : 67
                Affiliations
                [1 ]ISNI 0000 0001 0708 1323, GRID grid.258151.a, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), , Jiangnan University, ; 1800 Lihu Road, Wuxi, 214122 Jiangsu China
                [2 ]ISNI 0000 0001 0708 1323, GRID grid.258151.a, School of Biotechnology, , Jiangnan University, ; 1800 Lihu Road, Wuxi, 214122 Jiangsu China
                Author information
                http://orcid.org/0000-0002-1909-7223
                Article
                914
                10.1186/s12934-018-0914-y
                5935971
                29729665
                8acc8bf3-2c58-40e2-8187-fa68ef04d75f
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 January 2018
                : 24 April 2018
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31500070
                Award Recipient :
                Funded by: Natural Science Foundation of Jiangsu Province
                Award ID: BK20150136
                Award ID: BK20150151
                Award Recipient :
                Funded by: Fundamental Research Funds for the Central Universities
                Award ID: JUSRP51705A
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Biotechnology
                glucaric acid,metabolic engineering,saccharomyces cerevisiae,miox4,delta-sequence integration

                Comments

                Comment on this article

                Related Documents Log