2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of SMYD2 Sensitized Cisplatin to Resistant Cells in NSCLC Through Activating p53 Pathway

      research-article
      1 , 2 , 1 , *
      Frontiers in Oncology
      Frontiers Media S.A.
      SMYD2, cisplatin resistance, lung cancer, p53, apoptosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein lysine methyltransferase SMYD2 has recently emerged as a new enzyme modulate gene transcription or signaling pathways, and involved into tumor progression. However, the role of SMYD2 in drug resistant is still not known. Here, we found that inhibition of SMYD2 by specific inhibitor could enhance the cell sensitivity to cisplatin (CDDP), but not paclitaxel, NVB, and VCR in non-small cell lung cancer (NSCLC). Further study showed that SMYD2 and its substrates were overexpressed in NSCLC resistant cells, and the inhibition of SMYD2 or knockdown by specific siRNA could reverse the cell resistance to cisplatin treatment in NSCLC/CDDP cells. In addition, our data indicated that the inhibition or knockdown SMYD2 inhibit tumor sphere formation and reduce cell migration in NSCLC/CDDP cells, but not in NSCLC parental cells. Mechanistically, inhibition of SMYD2 could enhance p53 pathway activity and induce cell apoptosis through regulating its target genes, including p21, GADD45, and Bax. On the contrary, the sensitivity of cells to cisplatin was decreased after knockdown p53 or in p53 deletion NSCLC cells. The synergistically action was further confirmed by in vivo experiments. Taken together, our results demonstrate SMYD2 is involved into cisplatin resistance through regulating p53 pathway, and might become a promising therapeutic target for cisplatin resistance in NSCLC.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Repression of p53 activity by Smyd2-mediated methylation.

          Specific sites of lysine methylation on histones correlate with either activation or repression of transcription. The tumour suppressor p53 (refs 4-7) is one of only a few non-histone proteins known to be regulated by lysine methylation. Here we report a lysine methyltransferase, Smyd2, that methylates a previously unidentified site, Lys 370, in p53. This methylation site, in contrast to the known site Lys 372, is repressing to p53-mediated transcriptional regulation. Smyd2 helps to maintain low concentrations of promoter-associated p53. We show that reducing Smyd2 concentrations by short interfering RNA enhances p53-mediated apoptosis. We find that Set9-mediated methylation of Lys 372 inhibits Smyd2-mediated methylation of Lys 370, providing regulatory cross-talk between post-translational modifications. In addition, we show that the inhibitory effect of Lys 372 methylation on Lys 370 methylation is caused, in part, by blocking the interaction between p53 and Smyd2. Thus, similar to histones, p53 is subject to both activating and repressing lysine methylation. Our results also predict that Smyd2 may function as a putative oncogene by methylating p53 and repressing its tumour suppressive function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex

            Background Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. Results Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36) is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. Conclusion We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural basis of substrate methylation and inhibition of SMYD2.

              Protein lysine methyltransferases are important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine to specific acceptor lysines on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate nonhistone protein substrates, revealing an additional mechanism to regulate cellular physiology. The oncogenic protein SMYD2 represses the functional activities of the tumor suppressor proteins p53 and Rb, making it an attractive drug target. Here we report the discovery of AZ505, a potent and selective inhibitor of SMYD2 that was identified from a high throughput chemical screen. We also present the crystal structures of SMYD2 with p53 substrate and product peptides, and notably, in complex with AZ505. This substrate competitive inhibitor is bound in the peptide binding groove of SMYD2. These results have implications for the development of SMYD2 inhibitors, and indicate the potential for developing novel therapies targeting this target class. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                26 April 2019
                2019
                : 9
                : 306
                Affiliations
                [1] 1School of Pharmacy, China Medical University , Shenyang, China
                [2] 2Shenyang Medical College , Shenyang, China
                Author notes

                Edited by: Yan-yan YAN, Shanxi Datong University, China

                Reviewed by: Chiara Ambrogio, Dana–Farber Cancer Institute, United States; Dawn Sijin Nin, National University of Singapore, Singapore

                *Correspondence: Minjie Wei mjwei@ 123456cmu.edu.cn

                This article was submitted to Cancer Molecular Targets and Therapeutics, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.00306
                6498871
                31106145
                8ace97dc-7420-4221-9501-e706073dc3c8
                Copyright © 2019 Shang and Wei.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 December 2018
                : 03 April 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 26, Pages: 9, Words: 5229
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81803476
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                smyd2,cisplatin resistance,lung cancer,p53,apoptosis
                Oncology & Radiotherapy
                smyd2, cisplatin resistance, lung cancer, p53, apoptosis

                Comments

                Comment on this article