8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          CD3-bispecific antibody therapy is a form of immunotherapy that enables soldier cells of the immune system to recognize and kill tumor cells. This type of therapy is currently successfully used in the clinic to treat tumors in the blood and is under investigation for tumors in our organs. The treatment of these solid tumors faces more pronounced hurdles, which affect the safety and efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of this field and identify intrinsic hurdles for solid cancers. Furthermore, we describe potential solutions and combinatorial approaches to overcome these challenges in order to generate safer and more effective therapies.

          Abstract

          Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.

          Related collections

          Most cited references210

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

            Therapeutic antibodies that block the programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer (mUC) 1–5 . However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here, we examined tumours from a large cohort of mUC patients treated with an anti–PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden (TMB). Lack of response was associated with a signature of transforming growth factor β (TGF-β) signalling in fibroblasts, particularly in patients with CD8+ T cells that were excluded from the tumour parenchyma and instead found in the fibroblast- and collagen-rich peritumoural stroma—a common phenotype among patients with mUC. Using a mouse model that recapitulates this immune excluded phenotype, we found that therapeutic administration of a TGF-β blocking antibody together with anti–PD-L1 reduced TGF-β signalling in stromal cells, facilitated T cell penetration into the centre of the tumour, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding outcome in this setting and suggests that TGF-β shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T cell infiltration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elements of cancer immunity and the cancer–immune set point

              Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                14 January 2021
                January 2021
                : 13
                : 2
                : 287
                Affiliations
                [1 ]Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; j.middelburg@ 123456lumc.nl
                [2 ]Genmab, 3584 CT Utrecht, The Netherlands; kke@ 123456genmab.com (K.K.); pen@ 123456genmab.com (P.E.); ala@ 123456genmab.com (A.F.L.); jsc@ 123456genmab.com (J.S.)
                Author notes
                [* ]Correspondence: T.van_Hall@ 123456lumc.nl ; Tel.: +31-71-5266945
                Author information
                https://orcid.org/0000-0002-4797-9653
                https://orcid.org/0000-0002-6274-8554
                https://orcid.org/0000-0001-9239-8439
                https://orcid.org/0000-0002-9738-9926
                https://orcid.org/0000-0002-9115-558X
                Article
                cancers-13-00287
                10.3390/cancers13020287
                7829968
                33466732
                8ad442e5-3a7a-4c58-b990-d3d9d57a1057
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 December 2020
                : 10 January 2021
                Categories
                Review

                antibody therapy,immuno-oncology,cd3-bispecific antibody,t-cell engager,solid tumors,on-target off-tumor toxicity,t-cell co-stimulation,tumor-associated antigens

                Comments

                Comment on this article