34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ontogeny of adrenal-like glucocorticoid synthesis pathway and of 20α-hydroxysteroid dehydrogenase in the mouse lung

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glucocorticoids exert recognized positive effects on lung development. The genes involved in the classical pathway of glucocorticoid synthesis normally occurring in adrenals were found to be expressed on gestation day (GD) 15.5 in the developing mouse lung. Recently, expression of two of these genes was also detected on GD 17.5 suggesting a more complex temporal regulation than previously expected. Here, we deepen the knowledge on expression of “adrenal” glucocorticoid synthesis genes in the mouse lung during the perinatal period and we also study expression of the gene encoding for the steroid inactivating enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD).

          Results

          We performed an ontogenic study of P450scc, 3β-hydroxysteroid dehydrogenase/Δ 54 isomerase 1 (3β-HSD1), 21-hydroxylase, 11β-hydroxylase, 11β-HSD1, and 11β-HSD2 expression up to post natal day (PN) 15. The substrate (progesterone) and the product (deoxycorticosterone) of 21-hydroxylase are substrates of 20α-HSD, thus 20α-HSD ( Akr1c18) gene expression was investigated. In lung samples collected between GD 15.5 and PN 15, 11β-hydroxylase was only detected on GD 15.5. In contrast, all the other tested genes were expressed throughout the analyzed period with different temporal expression patterns. P450scc, 21-hydroxylase, 20α-HSD and 11β-HSD2 mRNA levels increased after birth with different patterns including an increase from PN 3 with a possible sex difference for 21-hydroxylase mRNA. Also, the 21-hydroxylase protein was observed by Western blot in perinatal lungs with higher levels after birth.

          Conclusion

          Progesterone is present at high levels during gestation and the product of 21-hydroxylase, deoxycorticosterone, can bind the glucocorticoid receptor with an affinity close to that of corticosterone. Detection of 21-hydroxylase at the protein level during antenatal lung development is the first evidence that the adrenal-like glucocorticoid synthesis pathway detected during lung development has the machinery to produce glucocorticoids in the fetal lung. Glucocorticoids from lung 21-hydroxylase appear to modulate lung ontogenesis through paracrine/intracrine actions.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.

          The role of the glucocorticoid receptor (GR) in glucocorticoid physiology and during development was investigated by generation of GR-deficient mice by gene targeting. GR -/- mice die within a few hours after birth because of respiratory failure. The lungs at birth are severely atelectatic, and development is impaired from day 15.5 p.c. Newborn livers have a reduced capacity to activate genes for key gluconeogenic enzymes. Feedback regulation via the hypothalamic-pituitary-adrenal axis is severely impaired resulting in elevated levels of plasma adrenocorticotrophic hormone (15-fold) and plasma corticosterone (2.5-fold). Accordingly, adrenal glands are enlarged because of hypertrophy of the cortex, resulting in increased expression of key cortical steroid biosynthetic enzymes, such as side-chain cleavage enzyme, steroid 11 beta-hydroxylase, and aldosterone synthase. Adrenal glands lack a central medulla and synthesize no adrenaline. They contain no adrenergic chromaffin cells and only scattered noradrenergic chromaffin cells even when analyzed from the earliest stages of medulla development. These results suggest that the adrenal medulla may be formed from two different cell populations: adrenergic-specific cells that require glucocorticoids for proliferation and/or survival, and a smaller noradrenergic population that differentiates normally in the absence of glucocorticoid signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function.

            Glucocorticoids and mineralocorticoids are steroid hormones classically thought to be secreted exclusively by the adrenal glands. However, recent evidence has shown that corticosteroids can also be locally synthesized in various other tissues, including primary lymphoid organs, intestine, skin, brain, and possibly heart. Evidence for local synthesis includes detection of steroidogenic enzymes and high local corticosteroid levels, even after adrenalectomy. Local synthesis creates high corticosteroid concentrations in extra-adrenal organs, sometimes much higher than circulating concentrations. Interestingly, local corticosteroid synthesis can be regulated via locally expressed mediators of the hypothalamic-pituitary-adrenal (HPA) axis or renin-angiotensin system (RAS). In some tissues (e.g., skin), these local control pathways might form miniature analogs of the pathways that regulate adrenal corticosteroid production. Locally synthesized glucocorticoids regulate activation of immune cells, while locally synthesized mineralocorticoids regulate blood volume and pressure. The physiological importance of extra-adrenal glucocorticoids and mineralocorticoids has been shown, because inhibition of local synthesis has major effects even in adrenal-intact subjects. In sum, while adrenal secretion of glucocorticoids and mineralocorticoids into the blood coordinates multiple organ systems, local synthesis of corticosteroids results in high spatial specificity of steroid action. Taken together, studies of these five major organ systems challenge the conventional understanding of corticosteroid biosynthesis and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring.

              Testosterone and progesterone titers were determined by RIA in the plasma of pregnant rats and their male and female fetuses from day 17 of gestation through the day of birth and in male and female neonates on days 3 and 5 post partum. Males had significantly higher mean testosterone levels than females from day 18 of gestation through day 5 post partum. Sex differences in plasma testosterone concentrations were greatest in the fetuses on days 18 and 19 of gestation when testosterone levels peaked in the males. Instances in which female fetuses had testosterone titers equal to or greater than their male littermates were found on every day of gestation except day 18. Mean testosterone concentrations in plasma of female fetuses were high throughout gestation (greater than 1000 pcg/ml). Testosterone concentrations decreased in both sexes after birth. Differences between the sexes remained significant, and although there was an overlap in the values for males and females, testosterone concentrations in females exceeded those of their male littermates in only one out of nine pairs of samples on day 5 and in none of seven pairs on day 3 post partum. There were no significant differences in progesterone levels in plasma of males and females, either pre- or postnatally. Progesterone titers changed as a function of days post conception in both the fetuses and their mothers. In the fetuses, progesterone levels declined progressively from day 18 post conception through the day of birth, while in the mother they rose from days 18 to 19 then declined between days 20 and 21 of pregnancy. Fetuses had lower progesterone titers than their mothers. From these data, we conclude that day 18 and possibly day 19 post conception represent a critical period during which the central nervous system of the male is primed by high levels of testosterone. Thereafter, the process of masculinization is completed by exposure to testosterone levels that are relatively low and need not be consistently higher than those of female littermates.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2014
                1 March 2014
                : 7
                : 119
                Affiliations
                [1 ]Reproduction, mother and youth health, Centre de recherche du CHU de Québec, Québec, QC, Canada
                [2 ]Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
                [3 ]Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
                Article
                1756-0500-7-119
                10.1186/1756-0500-7-119
                3944916
                24580729
                8ae0fede-da9e-4c74-b9b1-d8c258b3d8f2
                Copyright © 2014 Boucher et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 December 2013
                : 24 February 2014
                Categories
                Research Article

                Medicine
                21-hydroxylase,11β-hydroxylase,corticosterone,development,fetal,glucocorticoid,progesterone,steroidogenesis,mineralocorticoid,11β-hsd

                Comments

                Comment on this article