30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here.

          RESEARCH DESIGN AND METHODS

          Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers ( n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors.

          RESULTS

          Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA ( P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased).

          CONCLUSIONS

          The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.

          Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose clamp technique: a method for quantifying insulin secretion and resistance.

            Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle.

              The broad nature of insulin resistant glucose metabolism in skeletal muscle of patients with type 2 diabetes suggests a defect in the proximal part of the insulin signaling network. We sought to identify the pathways compromised in insulin resistance and to test the effect of moderate exercise on whole-body and cellular insulin action. We conducted euglycemic clamps and muscle biopsies on type 2 diabetic patients, obese nondiabetics and lean controls, with and without a single bout of exercise. Insulin stimulation of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway, as measured by phosphorylation of the insulin receptor and IRS-1 and by IRS protein association with p85 and with PI 3-kinase, was dramatically reduced in obese nondiabetics and virtually absent in type 2 diabetic patients. Insulin stimulation of the MAP kinase pathway was normal in obese and diabetic subjects. Insulin stimulation of glucose-disposal correlated with association of p85 with IRS-1. Exercise 24 hours before the euglycemic clamp increased phosphorylation of insulin receptor and IRS-1 in obese and diabetic subjects but did not increase glucose uptake or PI 3-kinase association with IRS-1 upon insulin stimulation. Thus, insulin resistance differentially affects the PI 3-kinase and MAP kinase signaling pathways, and insulin-stimulated IRS-1-association with PI 3-kinase defines a key step in insulin resistance.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                January 2010
                15 October 2009
                : 59
                : 1
                : 33-42
                Affiliations
                [1] 1Center for Metabolic Biology, Arizona State University, Tempe, Arizona;
                [2] 2Department of Kinesiology, Arizona State University, Tempe, Arizona;
                [3] 3Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona;
                [4] 4Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark;
                [5] 5School of Life Sciences, Arizona State University, Tempe, Arizona.
                Author notes
                Corresponding author: Lawrence J. Mandarino, lawrence.mandarino@ 123456asu.edu .
                Article
                0214
                10.2337/db09-0214
                2797941
                19833877
                8af0d8d3-7af2-4c9d-be9f-b0af5c20d228
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 19 February 2009
                : 3 October 2009
                Funding
                Funded by: National Institutes of Health
                Award ID: R01DK47936
                Award ID: R01DK66483
                Award ID: R01DK081750
                Categories
                Original Article
                Metabolism

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article