14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved variance estimation of classification performance via reduction of bias caused by small sample size

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than random guessing. A suggested alternative is to obtain a confidence interval of the error rate using repeated design and test sets selected from available examples. However, it is known that even in the ideal situation of repeated designs and tests with completely novel samples in each cycle, a small test set size leads to a large bias in the estimate of the true variance between design sets. Therefore different methods for small sample performance estimation such as a recently proposed procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased estimates, which in turn translates into biased confidence intervals. Here we explore such biases and develop a refined algorithm called Repeated Independent Design and Test (RIDT).

          Results

          Our simulations reveal that repeated designs and tests based on resampling in a fixed bag of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an improved variance estimate by means of a procedure that explicitly models how this bias depends on the number of samples used for testing. For the special case of repeated designs and tests using new samples for each design and test, we present an exact analytical expression for how the expected value of the bias decreases with the size of the test set.

          Conclusion

          We show that via modeling and subsequent reduction of the small sample bias, it is possible to obtain an improved estimate of the variance of classifier performance between design sets. However, the uncertainty of the variance estimate is large in the simulations performed indicating that the method in its present form cannot be directly applied to small data sets.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

          T. Golub (1999)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.

            Oligonucleotide arrays can provide a broad picture of the state of the cell, by monitoring the expression level of thousands of genes at the same time. It is of interest to develop techniques for extracting useful information from the resulting data sets. Here we report the application of a two-way clustering method for analyzing a data set consisting of the expression patterns of different cell types. Gene expression in 40 tumor and 22 normal colon tissue samples was analyzed with an Affymetrix oligonucleotide array complementary to more than 6,500 human genes. An efficient two-way clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues. Coregulated families of genes clustered together, as demonstrated for the ribosomal proteins. Clustering also separated cancerous from noncancerous tissue and cell lines from in vivo tissues on the basis of subtle distributed patterns of genes even when expression of individual genes varied only slightly between the tissues. Two-way clustering thus may be of use both in classifying genes into functional groups and in classifying tissues based on gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of cancer outcome with microarrays: a multiple random validation strategy

              General studies of microarray gene-expression profiling have been undertaken to predict cancer outcome. Knowledge of this gene-expression profile or molecular signature should improve treatment of patients by allowing treatment to be tailored to the severity of the disease. We reanalysed data from the seven largest published studies that have attempted to predict prognosis of cancer patients on the basis of DNA microarray analysis. The standard strategy is to identify a molecular signature (ie, the subset of genes most differentially expressed in patients with different outcomes) in a training set of patients and to estimate the proportion of misclassifications with this signature on an independent validation set of patients. We expanded this strategy (based on unique training and validation sets) by using multiple random sets, to study the stability of the molecular signature and the proportion of misclassifications. The list of genes identified as predictors of prognosis was highly unstable; molecular signatures strongly depended on the selection of patients in the training sets. For all but one study, the proportion misclassified decreased as the number of patients in the training set increased. Because of inadequate validation, our chosen studies published overoptimistic results compared with those from our own analyses. Five of the seven studies did not classify patients better than chance. The prognostic value of published microarray results in cancer studies should be considered with caution. We advocate the use of validation by repeated random sampling.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2006
                13 March 2006
                : 7
                : 127
                Affiliations
                [1 ]Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
                [2 ]Department of Engineering Sciences, Uppsala University, Box 528, SE-751 20 Uppsala, Sweden
                Article
                1471-2105-7-127
                10.1186/1471-2105-7-127
                1435937
                16533392
                8afad5b1-af80-4824-84e4-c0d082cb50bb
                Copyright © 2006 Wickenberg-Bolin et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 November 2005
                : 13 March 2006
                Categories
                Research Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article