5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of cleaning and disinfection procedures on microbial ecology and Salmonella antimicrobial resistance in a pig slaughterhouse

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To guarantee food safety, a better deciphering of ecology and adaptation strategies of bacterial pathogens such as Salmonella in food environments is crucial. The role of food processing conditions such as cleaning and disinfection procedures on antimicrobial resistance emergence should especially be investigated. In this work, the prevalence and antimicrobial resistance of Salmonella and the microbial ecology of associated surfaces communities were investigated in a pig slaughterhouse before and after cleaning and disinfection procedures. Salmonella were detected in 67% of samples and isolates characterization revealed the presence of 15 PFGE-patterns belonging to five serotypes: S.4,5,12:i:-, Rissen, Typhimurium, Infantis and Derby. Resistance to ampicillin, sulfamethoxazole, tetracycline and/or chloramphenicol was detected depending on serotypes. 16S rRNA-based bacterial diversity analyses showed that Salmonella surface associated communities were highly dominated by the Moraxellaceae family with a clear site-specific composition suggesting a persistent colonization of the pig slaughterhouse. Cleaning and disinfection procedures did not lead to a modification of Salmonella susceptibility to antimicrobials in this short-term study but they tended to significantly reduce bacterial diversity and favored some genera such as Rothia and Psychrobacter. Such data participate to the construction of a comprehensive view of Salmonella ecology and antimicrobial resistance emergence in food environments in relation with cleaning and disinfection procedures.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet.

            Standardized rapid pulsed-field gel electrophoresis (PFGE) protocols for the subtyping of Escherichia coli O157:H7, Salmonella serotypes, and Shigella species are described. These protocols are used by laboratories in PulseNet, a network of state and local health departments, and other public health laboratories that perform real-time PFGE subtyping of these bacterial foodborne pathogens for surveillance and outbreak investigations. Development and standardization of these protocols consisted of a thorough optimization of reagents and reaction conditions to ensure that the protocols yielded consistent results and high-quality PFGE pattern data in all the PulseNet participating laboratories. These rapid PFGE protocols are based on the original 3-4-day standardized procedure developed at Centers for Disease Control and Prevention that was validated in 1996 and 1997 by eight independent laboratories. By using these rapid standardized PFGE protocols, PulseNet laboratories are able to subtype foodborne pathogens in approximately 24 h, allowing for the early detection of foodborne disease case clusters and often aiding in the identification of the source responsible for the infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Swarm: robust and fast clustering method for amplicon-based studies

              Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units.
                Bookmark

                Author and article information

                Contributors
                arnaud.bridier@anses.fr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 September 2019
                10 September 2019
                2019
                : 9
                Affiliations
                [1 ]ISNI 0000 0001 0584 7022, GRID grid.15540.35, Antibiotics, Biocides, Residues and Resistance Unit, , Fougères Laboratory, ANSES, ; Fougères, France
                [2 ]Chlean Pass Joint Technological Network, Hygienic Design of Production Lines and Equipment, France
                [3 ]ISNI 0000 0000 8891 6478, GRID grid.435456.5, Department of Fresh and Processed Meat, , IFIP-Institut du Porc, ; Maisons-Alfort, France
                [4 ]ISNI 0000 0000 8891 6478, GRID grid.435456.5, Department of Fresh and Processed Meat, , IFIP-Institut du Porc, ; Le Rheu, France
                Article
                49464
                10.1038/s41598-019-49464-8
                6736965
                31506516
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: French ministry of agriculture and food EcoAntibio plan
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized

                microbiology, antimicrobial resistance, microbial ecology

                Comments

                Comment on this article