Blog
About

17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EXAFS and XANES analysis of oxides at the nanoscale

      a , * , b , *

      IUCrJ

      International Union of Crystallography

      EXAFS, XANES, oxide nanomaterials, nanocrystalline materials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work presents a discussion of the possibilities offered by X-ray absorption spectroscopy (XAS) to study the local structure of nanomaterials. The current state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS), including an advanced approach based on the use of classical molecular dynamics, is described and exemplified in the case of NiO nanoparticles. In addition, the limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) in determining several effects associated with the nanocrystalline nature of materials are also discussed in connection with the development of ZnO-based dilute magnetic semiconductors and iron oxide nanoparticles.

          Abstract

          Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

          Related collections

          Author and article information

          Journal
          IUCrJ
          IUCrJ
          IUCrJ
          IUCrJ
          International Union of Crystallography
          2052-2525
          01 November 2014
          31 October 2014
          31 October 2014
          : 1
          : Pt 6 ( publisher-idID: m140600 )
          : 571-589
          Affiliations
          [a ]Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia
          [b ]Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
          Author notes
          Article
          hf5270 IUCRAJ S2052252514021101
          10.1107/S2052252514021101
          4224475
          25485137
          © Kuzmin and Chaboy 2014

          This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

          Categories
          Feature Articles

          Comments

          Comment on this article