171
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Competition for nutrients contained in diverse types of plant cell wall-associated polysaccharides may explain the evolution of substrate-specific catabolic gene modules in common bacterial members of the human gut microbiota.

          Abstract

          Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats.

          Author Summary

          Bacteria inhabiting the human gut are critical for digestion of the plant-derived glycans that compose dietary fiber. Enzymes produced by the human body cannot degrade these abundant dietary components, and without bacterial assistance they would go unused. We investigated the molecular strategies employed by two species belonging to one of the most abundant bacterial groups in the human colon (the Bacteroidetes). Our results show that each species has evolved to degrade a unique subset of glycans; this specialization is reflected in their respective genomes, each of which contains numerous separate gene clusters involved in metabolizing plant fiber polysaccharides or glycans present in secreted mucus. Each glycan-specific gene cluster produces a related series of membrane-associated proteins which together serve to bind and degrade a specific glycan. Expression of each glycan-specific gene cluster is controlled by an environmental sensor that responds to the presence of a unique molecular signature contained in the substrate that it targets. These results provide a view of how related bacterial species have diverged into different carbohydrate niches by evolving genes that sense and degrade unique suites of available polysaccharides, a process that likely applies to disparate bacteria from the gut and other habitats.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

          S Altschul (1997)
          The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A human gut microbial gene catalogue established by metagenomic sequencing.

            To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity of the human intestinal microbial flora.

              The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2011
                December 2011
                20 December 2011
                : 9
                : 12
                : e1001221
                Affiliations
                [1 ]Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [2 ]Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
                [3 ]Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
                [4 ]Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
                [5 ]Architecture et Fonction des Macromolécules Biologiques, CNRS and Universities of Aix-Marseille I & II, Marseille, France
                University of California Davis, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: ECM ECL DNB JIG. Performed the experiments: ECM ECL HC NAP MW. Analyzed the data: ECM ECL NAP MW BH DNB. Contributed reagents/materials/analysis tools: ECM ECL DWA HC MW NPM BH DNB. Wrote the paper: ECM ECL DWA BH HJG DNB JIG.

                Article
                PBIOLOGY-D-11-02278
                10.1371/journal.pbio.1001221
                3243724
                22205877
                8b0c6a6a-9f9c-4e74-a849-98a5a5b13f94
                Martens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 June 2011
                : 7 November 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Biochemistry
                Genetics
                Genomics
                Microbiology

                Life sciences
                Life sciences

                Comments

                Comment on this article