13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances and Prospects in Stem Cells for Cartilage Regeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

          The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The control of chondrogenesis.

            Chondrogenesis is the earliest phase of skeletal development, involving mesenchymal cell recruitment and migration, condensation of progenitors, and chondrocyte differentiation, and maturation and resulting in the formation of cartilage and bone during endochondral ossification. This process is controlled exquisitely by cellular interactions with the surrounding matrix, growth and differentiation factors, and other environmental factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. Vertebrate limb development is controlled by interacting patterning systems involving prominently the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and hedgehog pathways. Both positive and negative signaling kinases and transcription factors, such as Sox9 and Runx2, and interactions among them determine whether the differentiated chondrocytes remain within cartilage elements in articular joints or undergo hypertrophic maturation prior to ossification. The latter process requires extracellular matrix remodeling and vascularization controlled by mechanisms that are not understood completely. Recent work has revealed novel roles for mediators such as GADD45beta, transcription factors of the Dlx, bHLH, leucine zipper, and AP-1 families, and the Wnt/beta-catenin pathway that interact at different stages during chondrogenesis. (c) 2005 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.

              Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
                Bookmark

                Author and article information

                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi Publishing Corporation
                1687-966X
                1687-9678
                2017
                26 January 2017
                : 2017
                : 4130607
                Affiliations
                1Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
                2Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
                3Medical College, Nankai University, Tianjin, 300071, China
                4Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
                Author notes
                *Shuyun Liu: clear_ann@ 123456163.com and

                Academic Editor: Jianying Zhang

                Author information
                http://orcid.org/0000-0003-4662-9288
                http://orcid.org/0000-0003-3865-4547
                http://orcid.org/0000-0001-5542-4079
                Article
                10.1155/2017/4130607
                5299204
                8b114086-1c67-4f9a-8ea9-2b6c66a0fbeb
                Copyright © 2017 Mingjie Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 July 2016
                : 24 November 2016
                : 26 December 2016
                Funding
                Funded by: National High Technology Research and Development Program of China
                Award ID: 2012AA020502
                Award ID: 2015AA020303
                Funded by: National Natural Science Foundation of China
                Award ID: 81472092
                Award ID: 21134004
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article