12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of the 2 Fe unit cell on the electronic structure measured by ARPES in iron pnictides

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In all iron pnictides, the positions of the ligand alternatively above and below the Fe plane create 2 inequivalent Fe sites. This results in 10 Fe 3d bands in the electronic structure. However, they do not all have the same status for an ARPES experiment. There are interference effects between the 2 Fe that modulate strongly the intensity of the bands and that can even switch their parity. We give a simple description of these effects, notably showing that ARPES polarization selection rules in these systems cannot be applied by reference to a single Fe ion. We show that ARPES data for the electron pockets in Ba(Fe0.92Co0.08)2As2 are in excellent agreement with this model. We observe both the total suppression of some bands and the parity switching of some other bands. Once these effects are properly taken into account, the structure of the electron pockets, as measured by ARPES, becomes very clear and simple. By combining ARPES measurements in different experimental configurations, we clearly isolate each band forming one of the electron pockets. We identify a deep electron band along one ellipse axis with the dxy orbital and a shallow electron band along the perpendicular axis with the dxz/dyz orbitals, in good agreement with band structure calculations. We show that the electron pockets are warped as a function of kz as expected theoretically, but that they are much smaller than predicted by the calculation.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Unconventional Superconductivity with a Sign Reversal in the Order Parameter ofLaFeAsO1−xFx

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Angle-resolved photoemission spectroscopy of the cuprate superconductors

            This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-scale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides a brief overview of the scientific issues relevant to the investigation of the low energy electronic structure by ARPES. The rest of the paper is devoted to the review of experimental results from the cuprates and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self energy and collective modes. Within each topic, ARPES data from the various copper oxides are presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties ofBa(Fe1−xCox)2As2

                Bookmark

                Author and article information

                Journal
                21 May 2012
                Article
                10.1103/PhysRevB.86.075123
                1205.4513
                8b38b35e-bf87-4fb8-9151-788ed7b8e023

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.str-el

                Comments

                Comment on this article