10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae : Linyphiidae : Troglohyphantes)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Speciation in subterranean habitats is commonly explained as the result of divergent selection in geographically isolated populations; conversely, the contribution of niche partitioning in driving subterranean species diversification has been rarely quantified. The present study integrated molecular and morphological data with a hypervolume analysis based on functional traits to investigate a potential case of parapatric speciation by means of niche differentiation in two sibling spiders inhabiting contiguous subterranean habitats within a small alpine hypogean site. Troglohyphantes giachinoi, sp. nov. and T. bornensis are diagnosed by small details of the genitalia, which are likely to be involved in a reproductive barrier. Molecular analysis recovered the two species as sister, and revealed a deep genetic divergence that may trace back to the Messinian (~6 million years ago). The hypervolume analysis highlighted a marginal overlap in their ecological niches, coupled with morphological character displacement. Specifically, T. giachinoi, sp. nov. exhibits morphological traits suitable for thriving in the smaller pores of the superficial network of underground fissures (Milieu Souterrain Superficiel, MSS), whereas T. bornensis shows a greater adaptation to the deep subterranean habitat. Our results suggest that different selective regimes within the subterranean environment, i.e. deep caves v. MSS, may either drive local speciation or facilitate contiguous distributions of independently subterranean adapted species.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Ecology and the origin of species.

          The ecological hypothesis of speciation is that reproductive isolation evolves ultimately as a consequence of divergent natural selection on traits between environments. Ecological speciation is general and might occur in allopatry or sympatry, involve many agents of natural selection, and result from a combination of adaptive processes. The main difficulty of the ecological hypothesis has been the scarcity of examples from nature, but several potential cases have recently emerged. I review the mechanisms that give rise to new species by divergent selection, compare ecological speciation with its alternatives, summarize recent tests in nature, and highlight areas requiring research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sexual selection and speciation.

            The power of sexual selection to drive changes in mate recognition traits gives it the potential to be a potent force in speciation. Much of the evidence to support this possibility comes from comparative studies that examine differences in the number of species between clades that apparently differ in the intensity of sexual selection. We argue that more detailed studies are needed, examining extinction rates and other sources of variation in species richness. Typically, investigations of extant natural populations have been too indirect to convincingly conclude speciation by sexual selection. Recent empirical work, however, is beginning to take a more direct approach and rule out confounding variables.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Competitive coexistence in spatially structured environments: a synthesis

                Bookmark

                Author and article information

                Journal
                Invertebrate Systematics
                Invert. Systematics
                CSIRO Publishing
                1445-5226
                2018
                2018
                : 32
                : 5
                : 1069
                Article
                10.1071/IS17090
                8b40045f-d7ff-43f5-a843-c702bb207c9a
                © 2018
                History

                Comments

                Comment on this article