61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential ( E GSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects E GSH changes induced by oxidative and nitrosative stress. The cytosolic basal E GSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in E GSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' E GSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular E GSH in P. falciparum. Applying this technique in further studies will enhance our understanding of redox regulation and mechanisms of drug action and resistance in Plasmodium and might also stimulate redox research in other pathogens.

          Author Summary

          In the malaria parasite Plasmodium falciparum, cellular redox reactions play important roles not only in redox-regulatory processes and antioxidant defense but also in the mechanisms of drug action and drug resistance. The tripeptide glutathione is present in malaria parasites in millimolar concentrations and represents the most important low molecular weight antioxidant. In this work, we describe the application of a genetically encoded glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein. By targeting this probe to the parasites' cytosol, we were able to verify its stability and responsiveness to the redox environment. Using this probe in living parasites, we further studied the effects of various redox active compounds and antimalarial drugs on the cytosolic glutathione redox potential in short, medium, and long-term experiments. Interestingly, after 24 h most antimalarial drugs, including quinolines and artemisinin derivatives, induced pronounced changes in the redox potential in pharmacologically meaningful concentrations. The chloroquine-sensitive P. falciparum 3D7 strain was generally more susceptible to these changes than the resistant Dd2 strain. We propose the hGrx1-roGFP2 probe as a reliable and most valuable tool for studying redox metabolism in living malaria parasites.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Human malaria parasites in continuous culture.

          Plasmodium falciparum can now be maintained in continuous culture in human erythrocytes incubated at 38 degrees C in RPMI 1640 medium with human serum under an atmosphere with 7 percent carbon dioxide and low oxygen (1 or 5 percent). The original parasite material, derived from an infected Aotus trivirgatus monkey, was diluted more than 100 million times by the addition of human erythrocytes at 3- or 4-day intervals. The parasites continued to reproduce in their normal asexual cycle of approximately 48 hours but were no longer highly synchronous. The have remained infective to Aotus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

            Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique.

              A rapid, semiautomated microdilution method was developed for measuring the activity of potential antimalarial drugs against cultured intraerythrocytic asexual forms of the human malaria parasite Plasmodium falciparum. Microtitration plates were used to prepare serial dilutions of the compounds to be tested. Parasites, obtained from continuous stock cultures, were subcultured in these plates for 42 h. Inhibition of uptake of a radiolabeled nucleic acid precursor by the parasites served as the indicator of antimalarial activity. Results of repeated measurements of activity with chloroquine, quinine, and the investigational new drug mefloquine demonstrated that the method is sensitive and precise. Several additional antimalarial drugs and compounds of interest were tested in vitro, and the results were consistent with available in vivo data. The use of P. falciparum isolates with known susceptibility to antimalarial drugs also permitted evaluation of the cross-resistance potential of each compound tested. The applications and expectations of this new test system within a drug development program are discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2013
                December 2013
                5 December 2013
                : 9
                : 12
                : e1003782
                Affiliations
                [1 ]Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
                [2 ]INRES-Chemical Signaling, University of Bonn, Bonn, Germany
                The Hebrew University of Jerusalem, Israel
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DK FM SR AJM KB. Performed the experiments: DK FM SR AJM. Analyzed the data: DK FM AJM KB. Contributed reagents/materials/analysis tools: AJM KB. Wrote the paper: DK FM SR AJM KB.

                Article
                PPATHOGENS-D-13-01244
                10.1371/journal.ppat.1003782
                3857819
                24348249
                8b426534-275f-4238-aa5b-08db0482858e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 May 2013
                : 8 October 2013
                Page count
                Pages: 18
                Funding
                This work was supported by the Deutsche Forschungsgemeinschaft, grant BE 1540/15-1/SPP 1710 to KB ( www.dfg.de) and by the German Academic Exchange Service, scholarship to DK ( https://www.daad.de/de). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article