Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sources of β-galactosidase and its applications in food industry

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The enzyme β-galactosidases have been isolated from various sources such as bacteria, fungi, yeast, vegetables, and recombinant sources. This enzyme holds importance due to its wide applications in food industries to manufacture lactose-hydrolyzed products for lactose-intolerant people and the formation of glycosylated products. Absorption of undigested lactose in small intestine requires the activity of this enzyme; hence, the deficiency of this enzyme leads to lactose intolerance. Lactose intolerance affects around 70% of world’s adult population, while the prevalence rate of lactose intolerance is 60% in Pakistan. β-Galactosidases are not only used to manufacture lactose-free products but also employed to treat whey, and used in prebiotics. This review focuses on various sources of β-galactosidase and highlights the importance of β-galactosidases in food industries.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides.

          Previously undescribed oligosaccharides in bovine cheese whey permeate were characterized by a combination of nanoelectrospray Fourier Transform Ion Cyclotron Resonance (nESI-FTICR) mass spectrometry and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) mass spectrometry. Oligosaccharide composition was elucidated by collision-induced dissociation within the ICR cell. In addition to sialyllactose (the most abundant oligosaccharide in bovine colostrum), we identified 14 other oligosaccharides, half of which have the same composition of human milk oligosaccharides. These oligosaccharides could potentially be used as additives in infant formula and products for the pharmaceutical industry. Because whey permeate is a by-product from the production of whey protein concentrate (WPC) and is readily available, it is an attractive source of oligosaccharides for potential application in human nutrition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation of oligosaccharides during enzymatic lactose: Part I: State of art.

            Enzymatic lactose hydrolysis by beta-galactosidase (lactase) was investigated with respect to the formation of oligosaccharides. An analysis of the formation of oligosaccharides and their control is important in the development of technical applications for enzymatic lactose hydrolysis. The available literature data on transfer reactions of lactase were reviewed, compared, and presented in a concise tabular form. Mechanisms and possible ways of modelling enzymatic lactose hydrolysis, including formation of oligosaccharides, are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              beta-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides.

              Recombinant beta-galactosidase from Lactobacillus plantarum WCFS1, homologously over-expressed in L. plantarum, was purified to apparent homogeneity using p-aminobenzyl 1-thio-beta-d-galactopyranoside affinity chromatography and subsequently characterized. The enzyme is a heterodimer of the LacLM-family type, consisting of a small subunit of 35kDa and a large subunit of 72kDa. The optimum pH for hydrolysis of its preferred substrates o-nitrophenyl-beta-d-galactopyranoside (oNPG) and lactose is 7.5 and 7.0, and optimum temperature for these reactions is 55 and 60 degrees C, respectively. The enzyme is most stable in the pH range of 6.5-8.0. The K(m), k(cat) and k(cat)/K(m) values for oNPG and lactose are 0.9mM, 92s(-1), 130mM(-1)s(-1) and 29mM, 98s(-1), 3.3mM(-1)s(-1), respectively. The L. plantarum beta-galactosidase possesses a high transgalactosylation activity and was used for the synthesis of prebiotic galacto-oligosaccharides (GOS). The resulting GOS mixture was analyzed in detail, and major components were identified by using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) as well as capillary electrophoresis. The maximal GOS yield was 41% (w/w) of total sugars at 85% lactose conversion (600mM initial lactose concentration). The enzyme showed a strong preference for the formation of beta-(1-->6) linkages in its transgalactosylation mode, while beta-(1-->3)-linked products were formed to a lesser extent, comprising approximately 80% and 9%, respectively, of the newly formed glycosidic linkages in the oligosaccharide mixture at maximum GOS formation. The main individual products formed were beta-d-Galp-(1-->6)-d-Lac, accounting for 34% of total GOS, and beta-d-Galp-(1-->6)-d-Glc, making up 29% of total GOS. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                shaimasaqib@hotmail.com
                attia.akram73@yahoo.com
                +(92) 42 99203781-84 , sobia.ahsan@kinnaird.edu.pk , sobiahal@gmail.com
                r384@hotmail.com
                Journal
                3 Biotech
                3 Biotech
                3 Biotech
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2190-572X
                2190-5738
                12 May 2017
                May 2017
                : 7
                : 1
                Affiliations
                GRID grid.444922.d, Department of Biochemistry, , Kinnaird College for Women, ; 93-Jail Road, Lahore, 54000 Pakistan
                Article
                645
                10.1007/s13205-017-0645-5
                5429307
                28500401
                © Springer-Verlag Berlin Heidelberg 2017
                Categories
                Review Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2017

                Comments

                Comment on this article