4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1044351e212">Allergen immunotherapy for patients with allergies begins with weekly escalating doses of allergen under medical supervision to monitor and treat IgE mast cell–mediated anaphylaxis. There is currently no treatment to safely desensitize mast cells to enable robust allergen immunotherapy with therapeutic levels of allergen. Here, we demonstrated that liposomal nanoparticles bearing an allergen and a high-affinity glycan ligand of the inhibitory receptor CD33 profoundly suppressed IgE-mediated activation of mast cells, prevented anaphylaxis in Tg mice with mast cells expressing human CD33, and desensitized mice to subsequent allergen challenge for several days. We showed that high levels of CD33 were consistently expressed on human skin mast cells and that the antigenic liposomes with CD33 ligand prevented IgE-mediated bronchoconstriction in slices of human lung. The results demonstrated the potential of exploiting CD33 to desensitize mast cells to provide a therapeutic window for administering allergen immunotherapy without triggering anaphylaxis. </p>

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          IgE and mast cells in allergic disease.

          Immunoglobulin E (IgE) antibodies and mast cells have been so convincingly linked to the pathophysiology of anaphylaxis and other acute allergic reactions that it can be difficult to think of them in other contexts. However, a large body of evidence now suggests that both IgE and mast cells are also key drivers of the long-term pathophysiological changes and tissue remodeling associated with chronic allergic inflammation in asthma and other settings. Such potential roles include IgE-dependent regulation of mast-cell functions, actions of IgE that are largely independent of mast cells and roles of mast cells that do not directly involve IgE. In this review, we discuss findings supporting the conclusion that IgE and mast cells can have both interdependent and independent roles in the complex immune responses that manifest clinically as asthma and other allergic disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Siglecs and their roles in the immune system.

            Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Siglec-mediated regulation of immune cell function in disease.

              All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                January 28 2019
                January 28 2019
                March 1 2019
                February 18 2019
                February 18 2019
                March 1 2019
                : 129
                : 3
                : 1387-1401
                Article
                10.1172/JCI125456
                6391081
                30645205
                8b67ccde-af41-420c-a8a9-3a1302f9ff16
                © 2019
                History

                Comments

                Comment on this article