59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references455

          • Record: found
          • Abstract: found
          • Article: not found

          Adsorption of methylene blue on low-cost adsorbents: a review.

          In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arsenic removal from water/wastewater using adsorbents--A critical review.

            Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, Japan and India. Among 21 countries in different parts of the world affected by groundwater arsenic contamination, the largest population at risk is in Bangladesh followed by West Bengal in India. Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation) with far less attention paid to adsorption. No previous review is available where readers can get an overview of the sorption capacities of both available and developed sorbents used for arsenic remediation together with the traditional remediation methods. We have incorporated most of the valuable available literature on arsenic remediation by adsorption ( approximately 600 references). Existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Arsenic sorption by commercially available carbons and other low-cost adsorbents are surveyed and critically reviewed and their sorption efficiencies are compared. Arsenic adsorption behavior in presence of other impurities has been discussed. Some commercially available adsorbents are also surveyed. An extensive table summarizes the sorption capacities of various adsorbents. Some low-cost adsorbents are superior including treated slags, carbons developed from agricultural waste (char carbons and coconut husk carbons), biosorbents (immobilized biomass, orange juice residue), goethite and some commercial adsorbents, which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior. Immobilized biomass adsorbents offered outstanding performances. Desorption of arsenic followed by regeneration of sorbents has been discussed. Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates. Arsenic concentrate treatment and disposal obtained is briefly addressed. This issue is very important but much less discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Photochemical processes for water treatment

                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                February 2016
                February 2016
                : 286
                :
                : 640-662
                Article
                10.1016/j.cej.2015.10.105
                8b6c4f21-cf1b-4972-8e3f-8736f5f0da0c
                © 2016
                History

                Comments

                Comment on this article