6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes melito neonatal Translated title: Neonatal diabetes mellitus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          O diabetes neonatal (DN) é uma condição rara caracterizada por hiperglicemia, que necessita de tratamento com insulina, diagnosticado nos primeiros meses de vida. Clinicamente pode ser classificado em DN transitório quando ocorre remissão da doença em poucos meses, podendo haver recorrência posterior; ou permanente quando, como o nome indica, não ocorre remissão. Ambas as condições são geneticamente heterogêneas; entretanto a maioria dos casos de DN transitório é decorrente de anormalidades da região de imprinted no cromossomo 6q24. Mutações ativadoras em heterozigose no gene KCNJ11, que codifica a subunidade Kir6.2 do canal de potássio ATP-sensível, são a causa mais comum de DN permanente. No presente artigo, discutimos as características clínicas do DN, os mecanismos moleculares envolvidos e suas implicações terapêuticas.

          Translated abstract

          Neonatal diabetes is a rare condition characterized by hyperglycemia, requiring insulin treatment, diagnosed within the first months of life. The disorder may be either transient, resolving in infancy or early childhood with possible relapse later, or permanent in which case lifelong treatment is necessary. Both conditions are genetically heterogeneous; however, the majority of the cases of transient neonatal diabetes are due to abnormalities of an imprinted region of chromosome 6q24. For permanent neonatal diabetes, the most common causes are heterozygous activating mutations of KCNJ11, the gene encoding the Kir6.2 sub-unit of the ATP-sensitive potassium channel. In this article we discuss the clinical features of neonatal diabetes, the underlying genetic defects and the therapeutic implications.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome.

          Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin.

            We have identified a non-insulin-dependent diabetic patient with fasting hyperinsulinemia (90 microU/ml), an elevated insulin:C-peptide molar ratio (1.68; normal, 0.05-0.20), normal insulin counterregulatory hormone levels, and an adequate response to exogenously administered insulin. Insulin-binding antibodies were absent from serum, erythrocyte insulin receptor binding was normal, and greater than 90% of circulating immunoreactive insulin coeluted with 125I-labeled insulin on gel filtration. The patient's insulin diluted in parallel with a human standard in the insulin radioimmunoassay, confirming close molecular similarity. The patient's insulin was purified from serum and shown to possess both reduced binding and ability to stimulate glucose uptake and oxidation in vitro. Analysis of the patient's insulin by high-performance liquid chromatography (HPLC) revealed two products: 7.3% of insulin immunoreactivity coeluted with the human standard, while the remaining 92.7% eluted as a single peak with increased hydrophobicity. Family studies confirmed the presence of hyperinsulinemia in four of five relatives in three generations, with secretion of an abnormal insulin documented by HPLC in the three tested. Leukocyte DNA was harvested from the propositus and the insulin gene cloned. One allele was normal, but the other displayed a thymine for guanine substitution at nucleotide position 1298 from the putative cap site, resulting in a leucine for valine substitution at position 3 of the insulin A chain. Insulin Wakayama is therefore identified as [LeuA3] insulin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular genetics goes to the diabetes clinic.

              Diabetes has historically been thought of as a medical specialty which primarily deals with treatment rather than diagnosis. Molecular genetic testing can now be used to make a diagnosis of the 1-2% of all diabetic patients with monogenic diabetes. Making a diagnosis of monogenic diabetes is important as it can have a dramatic effect on the treatment a patient should receive: glucokinase MODY patients need no treatment; HNF1alpha MODY patients are very sensitive to low dose sulphonylureas; and patients with neonatal diabetes due to Kir6.2 mutations, despite being insulin dependent, can discontinue insulin and be well controlled on high dose sulphonylurea tablets. The challenge for diabetologists is to use clinical skills to detect these monogenic patients whose care will be greatly helped by the treatment changes that follow molecular genetic testing.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Journal
                abem
                Arquivos Brasileiros de Endocrinologia & Metabologia
                Arq Bras Endocrinol Metab
                Sociedade Brasileira de Endocrinologia e Metabologia (São Paulo )
                1677-9487
                March 2008
                : 52
                : 2
                : 181-187
                Affiliations
                [1 ] Universidade Federal de São Paulo Brazil
                Article
                S0004-27302008000200005
                10.1590/S0004-27302008000200005
                8b73be05-2d18-4334-8674-1dc0b179f49a

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0004-2730&lng=en
                Categories
                ENDOCRINOLOGY & METABOLISM

                Endocrinology & Diabetes
                Neonatal diabetes,Genetic,Therapeutic,Diabetes neonatal,Genética,Terapêutica

                Comments

                Comment on this article