19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells.

      The Journal of Immunology Author Choice
      Animals, Antigens, Viral, immunology, Cell Line, Cross Reactions, Dengue Virus, Disease Models, Animal, Humans, Immunologic Memory, Interferons, Mice, Mice, Mutant Strains, Plasma Cells, pathology, virology, Severe Dengue, T-Lymphocytes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The four dengue virus (DENV) serotypes cause dengue fever and dengue hemorrhagic fever/dengue shock syndrome. Although severe disease has been associated with heterotypic secondary DENV infection, most secondary DENV infections are asymptomatic or result in classic DF. The role of cross-reactive immunity in mediating cross-protection against secondary heterotypic DENV infection is not well understood. DENV infection of IFN-α/β and IFN-γ receptor-deficient (AG129) mice reproduces key features of human disease. We previously demonstrated a role in cross-protection for pre-existing cross-reactive Abs, maintained by long-lived plasma cells. In this study, we use a sequential infection model, infecting AG129 mice with DENV-1, followed by DENV-2 6-8 wk later. We find that increased DENV-specific avidity during acute secondary heterotypic infection is mediated by cross-reactive memory B cells, as evidenced by increased numbers of DENV-1-specific cells by ELISPOT and higher avidity against DENV-1 of supernatants from polyclonally stimulated splenocytes isolated from mice experiencing secondary DENV-2 infection. However, increased DENV-specific avidity is not associated with increased DENV-specific neutralization, which appears to be mediated by naive B cells. Adoptive transfer of DENV-1-immune B and T cells into naive mice prior to secondary DENV-2 infection delayed mortality. Mice depleted of T cells developed signs of disease, but recovered after secondary DENV infection. Overall, we found that protective cross-reactive Abs are secreted by both long-lived plasma cells and memory B cells and that both cross-reactive B cells and T cells provide protection against a secondary heterotypic DENV infection. Understanding the protective immunity that develops naturally against DENV infection may help design future vaccines.

          Related collections

          Author and article information

          Comments

          Comment on this article