69
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid and sensitive detection of Yersinia pestis by lateral-flow assay in simulated clinical samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Yersinia pestis is a contributing agent to the epidemic disease, plague, which killed an estimated 200 million people during historical times. In this study, a rapid, cheap, sensitive, and specific technique, the lateral flow assay (F1 strips), has been successfully developed to detect this pathogen, by using paired monoclonal antibodies (MAbs) against Y. pestis capsule like fraction 1 (F1) protein. Compared with the polyclonal antibody (PAb) based F1 strips, the Mab-based F1 strips have a remarkable increased detection limitation (10 to 100 folds). Furthermore, besides the limitation and specificity evaluation, the application of this F1 strip on simulated clinical samples indicate the LFA can be a good candidate to detect plague.

          Methods

          Recombinant F1 antigen was expressed and purified from a series of works. The various anti-F1 monoclonal antibodies generated from hybridoma cells were screened with the ELISA technique. To evaluate the feasibility of this Y. pestis F1 test strip, the F1 protein/ Y. pestis was spiked into simulated clinical samples such as human serum, mouse bronchoalveolar lavage fluids, and mouse blood to mimic natural infection status. Additionally, this technique was applied to detect the Y. pestis in the environment-captured rats, to evaluate the practical usefulness of the strips.

          Results

          By using this MAb-based-LFA technique, 4 ng/ml of recombinant F1-protein and 10 3 CFU/ml of Y. pestis could be detected in less than 10 mins, which is at least 10-folds than that of the PAb format. On the other hand, although various Yersinia strains were applied to the strips, only Y. pestis strain showed a positive result; all other Yersinia species did not produce a positive signal, indicating the high efficiency and specificity of the MAb-based F1-strips.

          Conclusion

          Based on our findings, we suggest that the MAb-format-LFA will be valuable as a diagnostic tool for the detection of Y. pestis. This report shows that the F1 strip is sufficient to support not only the detection of plague in simulated clinical samples, but also it may be a good candidate to meet the epidemiological surveillance during an outbreak of the biological warfare.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Yersinia pestis--etiologic agent of plague.

          Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense.

            The Working Group on Civilian Biodefense has developed consensus-based recommendations for measures to be taken by medical and public health professionals following the use of plague as a biological weapon against a civilian population. The working group included 25 representatives from major academic medical centers and research, government, military, public health, and emergency management institutions and agencies. MEDLINE databases were searched from January 1966 to June 1998 for the Medical Subject Headings plague, Yersinia pestis, biological weapon, biological terrorism, biological warfare, and biowarfare. Review of the bibliographies of the references identified by this search led to subsequent identification of relevant references published prior to 1966. In addition, participants identified other unpublished references and sources. Additional MEDLINE searches were conducted through January 2000. The first draft of the consensus statement was a synthesis of information obtained in the formal evidence-gathering process. The working group was convened to review drafts of the document in October 1998 and May 1999. The final statement incorporates all relevant evidence obtained by the literature search in conjunction with final consensus recommendations supported by all working group members. An aerosolized plague weapon could cause fever, cough, chest pain, and hemoptysis with signs consistent with severe pneumonia 1 to 6 days after exposure. Rapid evolution of disease would occur in the 2 to 4 days after symptom onset and would lead to septic shock with high mortality without early treatment. Early treatment and prophylaxis with streptomycin or gentamicin or the tetracycline or fluoroquinolone classes of antimicrobials would be advised.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development and testing of a rapid diagnostic test for bubonic and pneumonic plague.

              Plague is often fatal without prompt and appropriate treatment. It affects mainly poor and remote populations. Late diagnosis is one of the major causes of human death and spread of the disease, since it limits the effectiveness of control measures. We aimed to develop and assess a rapid diagnostic test (RDT) for plague. We developed a test that used monoclonal antibodies to the F1 antigen of Yersinia pestis. Sensitivity and specificity were assessed with a range of bacterial cultures and clinical samples, and compared with findings from available ELISA and bacteriological tests for plague. Samples from patients thought to have plague were tested with the RDT in the laboratory and by health workers in 26 pilot sites in Madagascar. The RDT detected concentrations of F1 antigen as low as 0.5 ng/mL in up to 15 min, and had a shelf life of 21 days at 60 degrees C. Its sensitivity and specificity were both 100%. RDT detected 41.6% and 31% more positive clinical specimens than did bacteriological methods and ELISA, respectively. The agreement rate between tests done at remote centres and in the laboratory was 89.8%. With the combination of bacteriological methods and F1 ELISA as reference standard, the positive and negative predictive values of the RDT were 90.6% and 86.7%, respectively. Our RDT is a specific, sensitive, and reliable test that can easily be done by health workers at the patient's bedside, for the rapid diagnosis of pneumonic and bubonic plague. This test will be of key importance for the control of plague in endemic countries.
                Bookmark

                Author and article information

                Contributors
                hlhsu@ndmctsgh.edu.tw
                ccchuang@mail.ndmctsgh.edu.tw
                ccliang@ndmctsgh.edu.tw
                cdj1228@yahoo.com.tw
                wh1520604@gmail.com
                yuping0215@yahoo.com.tw
                linpp7618@gmail.com
                +886-2-8177-7038 , shyu11@yahoo.com.tw
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                14 August 2018
                14 August 2018
                2018
                : 18
                : 402
                Affiliations
                ISNI 0000 0004 0634 0356, GRID grid.260565.2, Institute of Preventive Medicine, , National Defense Medical Center, ; P.O. Box 90048-700, Taipei, Taiwan
                Author information
                http://orcid.org/0000-0001-6622-753X
                Article
                3315
                10.1186/s12879-018-3315-2
                6092852
                30107826
                8b785459-649f-4a14-8786-6e68abcf62e2
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 June 2017
                : 6 August 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Infectious disease & Microbiology
                bronchoalveolar lavage,capsule-like f1 antigen,immunogold detection,lateral flow assay,yersinia pestis

                Comments

                Comment on this article