12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electrophysiological mechanisms and determinants of vagal maneuvers for termination of paroxysmal supraventricular tachycardia.

      Circulation
      Adolescent, Adult, Aged, Autonomic Pathways, physiology, physiopathology, Electrophysiology, Female, Heart Conduction System, Humans, Male, Middle Aged, Tachycardia, Paroxysmal, therapy, Tachycardia, Supraventricular, Vagus Nerve

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vagal maneuvers used for termination of paroxysmal supraventricular reentrant tachycardia (PSVT) appear to involve more complex mechanisms than we have known, and further study should be done to explore the possible mechanisms. In this study, 133 patients with PSVT and 30 age- and sex-matched control subjects were included. We assessed the effects of different vagal maneuvers on termination of PSVT and compared baroreflex sensitivity and beta-adrenergic sensitivity between the patients with PSVT and control subjects. Out of 85 patients with atrioventricular reciprocating tachycardia (AVRT), vagal maneuvers terminated in 45 (53%). Of these, 28 (33%) terminated in the antegrade limb and 17 (20%) terminated in the retrograde limb. Out of 48 patients with atrioventricular nodal reentrant tachycardia (AVNRT), vagal maneuvers terminated the tachycardia in the antegrade slow pathway (14%) or in the retrograde fast pathway (19%). Baroreflex sensitivity was poorer but isoproterenol sensitivity test better in patients with AVNRT. Poorer antegrade atrioventricular node conduction properties and better vagal response determined successful antegrade termination of AVRT by vagal maneuvers. Poorer retrograde accessory pathway conduction property but better vagal response determined successful retrograde termination of AVRT. Better sympathetic and vagal response associated with poorer retrograde atrioventricular node conduction determined retrograde termination of AVNRT by the Valsalva maneuver. Both the vagal response and conduction properties of the reentrant circuit determine the tachycardia termination by vagal maneuvers. Improved understanding of the interaction of autonomic and electrophysiological mechanisms in maintaining or terminating PSVT may provide important insight into the pathophysiology of these two tachycardias.

          Related collections

          Author and article information

          Comments

          Comment on this article