68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cancer immunoediting and resistance to T cell-based immunotherapy

      , ,
      Nature Reviews Clinical Oncology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis.

          Pathological complete response has been proposed as a surrogate endpoint for prediction of long-term clinical benefit, such as disease-free survival, event-free survival (EFS), and overall survival (OS). We had four key objectives: to establish the association between pathological complete response and EFS and OS, to establish the definition of pathological complete response that correlates best with long-term outcome, to identify the breast cancer subtypes in which pathological complete response is best correlated with long-term outcome, and to assess whether an increase in frequency of pathological complete response between treatment groups predicts improved EFS and OS. We searched PubMed, Embase, and Medline for clinical trials of neoadjuvant treatment of breast cancer. To be eligible, studies had to meet three inclusion criteria: include at least 200 patients with primary breast cancer treated with preoperative chemotherapy followed by surgery; have available data for pathological complete response, EFS, and OS; and have a median follow-up of at least 3 years. We compared the three most commonly used definitions of pathological complete response--ypT0 ypN0, ypT0/is ypN0, and ypT0/is--for their association with EFS and OS in a responder analysis. We assessed the association between pathological complete response and EFS and OS in various subgroups. Finally, we did a trial-level analysis to assess whether pathological complete response could be used as a surrogate endpoint for EFS or OS. We obtained data from 12 identified international trials and 11 955 patients were included in our responder analysis. Eradication of tumour from both breast and lymph nodes (ypT0 ypN0 or ypT0/is ypN0) was better associated with improved EFS (ypT0 ypN0: hazard ratio [HR] 0·44, 95% CI 0·39-0·51; ypT0/is ypN0: 0·48, 0·43-0·54) and OS (0·36, 0·30-0·44; 0·36, 0·31-0·42) than was tumour eradication from the breast alone (ypT0/is; EFS: HR 0·60, 95% CI 0·55-0·66; OS 0·51, 0·45-0·58). We used the ypT0/is ypN0 definition for all subsequent analyses. The association between pathological complete response and long-term outcomes was strongest in patients with triple-negative breast cancer (EFS: HR 0·24, 95% CI 0·18-0·33; OS: 0·16, 0·11-0·25) and in those with HER2-positive, hormone-receptor-negative tumours who received trastuzumab (EFS: 0·15, 0·09-0·27; OS: 0·08, 0·03, 0·22). In the trial-level analysis, we recorded little association between increases in frequency of pathological complete response and EFS (R(2)=0·03, 95% CI 0·00-0·25) and OS (R(2)=0·24, 0·00-0·70). Patients who attain pathological complete response defined as ypT0 ypN0 or ypT0/is ypN0 have improved survival. The prognostic value is greatest in aggressive tumour subtypes. Our pooled analysis could not validate pathological complete response as a surrogate endpoint for improved EFS and OS. US Food and Drug Administration. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control

            Summary Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer immunotherapy: moving beyond current vaccines.

              Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Nature
                1759-4774
                1759-4782
                December 6 2018
                Article
                10.1038/s41571-018-0142-8
                30523282
                8b9eae89-e719-4d92-bbe4-4657567da4b6
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article