16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NAD(P)H:quinone oxidoreductase 1 inducer activity of some novel anilinoquinazoline derivatives

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives ( 2–16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one ( 9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series.

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.

          The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry-bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two-site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superoxide radical and superoxide dismutases.

            O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH.. SODs inhibit such HO. production by scavengingO2-, but Cu, ZnSODs, by virtue of a nonspecific peroxidase activity, may peroxidize spin trapping agents and thus give the appearance of catalyzing OH. production from H2O2. There is a glycosylated, tetrameric Cu, ZnSOD in the extracellular space that binds to acidic glycosamino-glycans. It minimizes the reaction of O2- with NO. E. coli, and other gram negative microorganisms, contain a periplasmic Cu, ZnSOD that may serve to protect against extracellular O2-. Mn(III) complexes of multidentate macrocyclic nitrogenous ligands catalyze the dismutation of O2- and are being explored as potential pharmaceutical agents. SOD-null mutants have been prepared to reveal the biological effects of O2-. SodA, sodB E. coli exhibit dioxygen-dependent auxotrophies and enhanced mutagenesis, reflecting O2(-)-sensitive biosynthetic pathways and DNA damage. Yeast, lacking either Cu, ZnSOD or MnSOD, are oxygen intolerant, and the double mutant was hypermutable and defective in sporulation and exhibited requirements for methionine and lysine. A Cu, ZnSOD-null Drosophila exhibited a shortened lifespan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reactive oxygen species: role in the development of cancer and various chronic conditions

              Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                08 August 2016
                : 10
                : 2515-2524
                Affiliations
                [1 ]Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
                [2 ]Department of Drug Radiation Research, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt
                [3 ]Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, UK
                [4 ]Department of Medicine
                [5 ]Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
                [6 ]Phytochemistry Department, National Research Center, Dokki, Giza
                [7 ]Zewail City of Science and Technology
                [8 ]Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
                Author notes
                Correspondence: Mostafa M Ghorab, Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Kingdom of Saudi Arabia, Tel +966 5 3429 2860, Email mmsghorab@ 123456yahoo.com
                Reem K Arafa, Zewail City of Science and Technology, Sheikh Zayed Campus, 12588, Cairo, Egypt, Tel +20 10 0207 4028, Email rkhidr@ 123456zewailcity.edu.eg
                Article
                dddt-10-2515
                10.2147/DDDT.S105423
                4982500
                27540279
                8ba24e16-21fe-4869-89b8-fab18da8f6cc
                © 2016 Ghorab et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                kelch domain,molecular modeling,keap1/nrf2,cytoprotection,nqo1 induction

                Comments

                Comment on this article