14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Progress and Future Prospects on All-Organic Polymer Dielectrics for Energy Storage Capacitors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references480

          • Record: found
          • Abstract: found
          • Article: not found

          A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

          The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Issues and challenges facing rechargeable lithium batteries.

            Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Materials for electrochemical capacitors.

              Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Reviews
                Chem. Rev.
                American Chemical Society (ACS)
                0009-2665
                1520-6890
                February 09 2022
                December 23 2021
                February 09 2022
                : 122
                : 3
                : 3820-3878
                Affiliations
                [1 ]State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, P. R. China
                [2 ]School of Electrical Engineering, Zheng Zhou University, Zhengzhou, Henan 450001, P. R. China
                Article
                10.1021/acs.chemrev.1c00793
                34939420
                8baff694-2546-4501-9c57-3d872d6d0292
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article