74
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ 13C

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          We present a non-intrusive method to quantify the relative contribution of different photosynthetic organs to grain filling in cereals based on their discrimination among isotopes of carbon fixed, highlighting the key role of the ear.

          Abstract

          During grain filling in C3 cereals, the shoot (particularly the flag leaf) and the ear are believed to play major roles as sources of assimilates. However, both the cost and the intrusive nature of most of the methodologies available to investigate this have prevented conclusive results being obtained. This study compared the carbon isotope composition (δ 13C) in its natural abundance in mature kernels with the δ 13C of the water-soluble fraction of the peduncle, glumes, and awns to assess the relative contribution of the shoot (understood as the whole set of photosynthetic organs below the peduncle) and ear to grain filling in a set of highly productive wheat lines from the International Maize and Wheat Improvement Center, Mexico, under good agronomic conditions. In overall terms, the contribution of the ear was greater in comparison with that of the shoot. The specific contribution of the flag leaf blade to grain filling was also assessed by comparing the δ 13C of grains with the δ 13C of the water-soluble fraction of the flag leaf and the awns. The contribution of the flag leaf was minor, ranging between 3 and 18%. Complementary analyses performed such as gas-exchange rates and the accumulated water-soluble carbohydrates in both organs and light intercepted by the canopy at different strata suggested that the ear has a photosynthetic capacity at least comparable to that of the flag leaf. In this sense, selection for a higher contribution of ear photosynthesis to grain yield in breeding programmes could be addressed with the use of stable isotopes.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Breeding for high water-use efficiency.

          There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may assist in such a strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant breeding and drought in C3 cereals: what should we breed for?

            Drought is the main abiotic constraint on cereal yield. Analysing physiological determinants of yield responses to water may help in breeding for higher yield and stability under drought conditions. The traits to select (either for stress escape, avoidance or tolerance) and the framework where breeding for drought stress is addressed will depend on the level and timing of stress in the targeted area. If the stress is severe, breeding under stress-free conditions may be unsuccessful and traits that confer survival may become a priority. However, selecting for yield itself under stress-alleviated conditions appears to produce superior cultivars, not only for optimum environments, but also for those characterized by frequent mild and moderate stress conditions. This implies that broad avoidance/tolerance to mild-moderate stresses is given by constitutive traits also expressed under stress-free conditions. In this paper, we focus on physiological traits that contribute to improved productivity under mild-moderate drought. Increased crop performance may be achieved through improvements in water use, water-use efficiency and harvest index. The first factor is relevant when soil water remains available at maturity or when deep-rooted genotypes access water in the soil profile that is not normally available; the two latter conditions become more important when all available water is exhausted by the end of the crop cycle. Independent of the mechanism operating, a canopy able to use more water than another would have more open stomata and therefore higher canopy temperature depression, and 13C discrimination (delta13C) in plant matter. The same traits would also seem to be relevant when breeding for hot, irrigated environments. Where additional water is not available to the crop, higher water-use efficiency (WUE) appears to be an alternative strategy to improve crop performance. In this context delta13C constitutes a simple but reliable measure of WUE. However, in contrast to lines performing better because of increased access to water, lines producing greater biomass due to superior WUE will have lower delta13C values. WUE may be modified not only through a decrease in stomatal conductance, but also through an increase in photosynthetic capacity. Harvest index is strongly reduced by terminal drought (i.e. drought during grain filling). Thus, phenological traits increasing the relative amount of water used during grain filling, or adjusting the crop cycle to the seasonal pattern of rainfall may be useful. Augmenting the contribution of carbohydrate reserves accumulated during vegetative growth to grain filling may also be worthwhile in harsh environmcnts. Alternatively, extending the duration of stem elongation without changing the timing of anthesis would increase the number of grains per spike and the harvest index without changing the amount of water utilized by the crop.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency.

              Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                October 2014
                22 July 2014
                22 July 2014
                : 65
                : 18
                : 5401-5413
                Affiliations
                1Unitat de Fisiología Vegetal, Facultat de Biologia, Universitat de Barcelona , Diagonal 645, Spain
                2International Maize and Wheat Improvement Center (CIMMYT) , El Batán, Texcoco CP 56130, Mexico
                Author notes
                * To whom correspondence should be addressed. E-mail: jaraus@ 123456ub.edu
                Article
                10.1093/jxb/eru298
                4157716
                25053645
                8bb7257c-8c10-424c-adf9-23e3dca9be9d
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                carbon isotope composition,ear,flag leaf,grain filling,photosynthesis,shoot.
                Plant science & Botany
                carbon isotope composition, ear, flag leaf, grain filling, photosynthesis, shoot.

                Comments

                Comment on this article