25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The impact of insulin resistance on the kidney and vasculature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin resistance is a systemic disorder that affects many organs and insulin-regulated pathways. The disorder is characterized by a reduced action of insulin despite increased insulin concentrations (hyperinsulinaemia). The effects of insulin on the kidney and vasculature differ in part from the effects on classical insulin target organs. Insulin causes vasodilation by enhancing endothelial nitric oxide production through activation of the phosphatidylinositol 3-kinase pathway. In insulin-resistant states, this pathway is impaired and the mitogen-activated protein kinase pathway stimulates vasoconstriction. The action of insulin on perivascular fat tissue and the subsequent effects on the vascular wall are not fully understood, but the hepatokine fetuin-A, which is released by fatty liver, might promote the proinflammatory effects of perivascular fat. The strong association of salt-sensitive arterial hypertension with insulin resistance indicates an involvement of the kidney in the insulin resistance syndrome. The insulin receptor is expressed on renal tubular cells and podocytes and insulin signalling has important roles in podocyte viability and tubular function. Renal sodium transport is preserved in insulin resistance and contributes to the salt-sensitivity of blood pressure in hyperinsulinaemia. Therapeutically, renal and vascular insulin resistance can be improved by an integrated holistic approach aimed at restoring overall insulin sensitivity and improving insulin signalling.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease.

          In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.

            Toll-like receptor 4 (TLR4) has a key role in innate immunity by activating an inflammatory signaling pathway. Free fatty acids (FFAs) stimulate adipose tissue inflammation through the TLR4 pathway, resulting in insulin resistance. However, current evidence suggests that FFAs do not directly bind to TLR4, but an endogenous ligand for TLR4 remains to be identified. Here we show that fetuin-A (FetA) could be this endogenous ligand and that it has a crucial role in regulating insulin sensitivity via Tlr4 signaling in mice. FetA (officially known as Ahsg) knockdown in mice with insulin resistance caused by a high-fat diet (HFD) resulted in downregulation of Tlr4-mediated inflammatory signaling in adipose tissue, whereas selective administration of FetA induced inflammatory signaling and insulin resistance. FFA-induced proinflammatory cytokine expression in adipocytes occurred only in the presence of both FetA and Tlr4; removing either of them prevented FFA-induced insulin resistance. We further found that FetA, through its terminal galactoside moiety, directly binds the residues of Leu100-Gly123 and Thr493-Thr516 in Tlr4. FFAs did not produce insulin resistance in adipocytes with mutated Tlr4 or galactoside-cleaved FetA. Taken together, our results suggest that FetA fulfills the requirement of an endogenous ligand for TLR4 through which lipids induce insulin resistance. This may position FetA as a new therapeutic target for managing insulin resistance and type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of metabolically benign obesity in humans.

              Obesity represents a risk factor for insulin resistance, type 2 diabetes mellitus, and atherosclerosis. In addition, for any given amount of total body fat, an excess of visceral fat or fat accumulation in the liver and skeletal muscle augments the risk. Conversely, even in obesity, a metabolically benign fat distribution phenotype may exist. In 314 subjects, we measured total body, visceral, and subcutaneous fat with magnetic resonance (MR) tomography and fat in the liver and skeletal muscle with proton MR spectroscopy. Insulin sensitivity was estimated from oral glucose tolerance test results. Subjects were divided into 4 groups: normal weight (body mass index [BMI] [calculated as weight in kilograms divided by height in meters squared], or = 30.0 and placement in the upper quartile of insulin sensitivity), and obese-insulin resistant (IR) (BMI, > or = 30.0 and placement in the lower 3 quartiles of insulin sensitivity). Total body and visceral fat were higher in the overweight and obese groups compared with the normal-weight group (P < .05); however, no differences were observed between the obese groups. In contrast, ectopic fat in skeletal muscle (P < .001) and particularly the liver (4.3% +/- 0.6% vs 9.5% +/- 0.8%) and the intima-media thickness of the common carotid artery (0.54 +/- 0.02 vs 0.59 +/- 0.01 mm) were lower and insulin sensitivity was higher (17.4 +/- 0.9 vs 7.3 +/- 0.3 arbitrary units) in the obese-IS vs the obese-IR group (P < .05). Unexpectedly, the obese-IS group had almost identical insulin sensitivity and the intima-media thickness was not statistically different compared with the normal-weight group (18.2 +/- 0.9 AU and 0.51 +/- 0.02 mm, respectively). A metabolically benign obesity that is not accompanied by insulin resistance and early atherosclerosis exists in humans. Furthermore, ectopic fat in the liver may be more important than visceral fat in the determination of such a beneficial phenotype in obesity.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                December 2016
                October 17 2016
                : 12
                : 12
                : 721-737
                Article
                10.1038/nrneph.2016.145
                27748389
                8bb8aec2-13ee-41c7-8ed2-a54d23ca35c0
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article