3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-factor reconciliation of discrepancies in ozone-precursor sensitivity retrieved from observation- and emission-based models

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions

          Abstract. To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. As a consequence, the emissions of major air pollutants have decreased and the air quality has substantially improved. Here, we quantified China's anthropogenic emission trends from 2010 to 2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and index decomposition analysis (IDA) approaches. The relative change rates of China's anthropogenic emissions during 2010–2017 are estimated as follows: −62 % for SO 2 , −17 % for NO x , +11 % for nonmethane volatile organic compounds (NMVOCs), +1 % for NH 3 , −27 % for CO, −38 % for PM 10 , −35 % for PM 2.5 , −27 % for BC, −35 % for OC, and +16 % for CO 2 . The IDA results suggest that emission control measures are the main drivers of this reduction, in which the pollution controls on power plants and industries are the most effective mitigation measures. The emission reduction rates markedly accelerated after the year 2013, confirming the effectiveness of China's Clean Air Action that was implemented since 2013. We estimated that during 2013–2017, China's anthropogenic emissions decreased by 59 % for SO 2 , 21 % for NO x , 23 % for CO, 36 % for PM 10 , 33 % for PM 2.5 , 28 % for BC, and 32 % for OC. NMVOC emissions increased and NH 3 emissions remained stable during 2010–2017, representing the absence of effective mitigation measures for NMVOCs and NH 3 in current policies. The relative contributions of different sectors to emissions have significantly changed after several years' implementation of clean air policies, indicating that it is paramount to introduce new policies to enable further emission reductions in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China

            Significance Drastic air pollution control in China since 2013 has achieved sharp decreases in fine particulate matter (PM2.5), but ozone pollution has not improved. After removing the effect of meteorological variability, we find that surface ozone has increased in megacity clusters of China, notably Beijing and Shanghai. The increasing trend cannot be simply explained by changes in anthropogenic precursor [NOx and volatile organic compound (VOC)] emissions, particularly in North China Plain (NCP). The most important cause of the increasing ozone in NCP appears to be the decrease in PM2.5, slowing down the sink of hydroperoxy radicals and thus speeding up ozone production. Decreasing ozone in the future will require a combination of NOx and VOC emission controls to overcome the effect of decreasing PM2.5.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The use of NOy, H2O2, and HNO3as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations

                Bookmark

                Author and article information

                Journal
                Environment International
                Environment International
                Elsevier BV
                01604120
                January 2022
                January 2022
                : 158
                : 106952
                Article
                10.1016/j.envint.2021.106952
                8bc74516-59b5-4459-bb0a-daa16d6dc350
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article