35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative stress and diabetic vascular complications.

      Diabetes Care
      Diabetes Mellitus, Type 1, physiopathology, Diabetes Mellitus, Type 2, Diabetic Angiopathies, epidemiology, mortality, Disease Susceptibility, Endothelium, Vascular, Free Radicals, Humans, Hyperglycemia, Models, Biological, Models, Cardiovascular, Morbidity, Oxidative Stress

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-term vascular complications still represent the main cause of morbidity and mortality in diabetic patients. Although prospective randomized long-term clinical studies comparing the effects of conventional and intensive therapy have demonstrated a clear link between diabetic hyperglycemia and the development of secondary complications of diabetes, they have not defined the mechanism through which excess glucose results in tissue damage. Evidence has accumulated indicating that the generation of reactive oxygen species (oxidative stress) may play an important role in the etiology of diabetic complications. This hypothesis is supported by evidence that many biochemical pathways strictly associated with hyperglycemia (glucose autoxidation, polyol pathway, prostanoid synthesis, protein glycation) can increase the production of free radicals. Furthermore, exposure of endothelial cells to high glucose leads to augmented production of superoxide anion, which may quench nitric oxide, a potent endothelium-derived vasodilator that participates in the general homeostasis of the vasculature. In further support of the consequential injurious role of oxidative stress, many of the adverse effects of high glucose on endothelial functions, such as reduced endothelial-dependent relaxation and delayed cell replication, are reversed by antioxidants. A rational extension of this proposed role for oxidative stress is the suggestion that the different susceptibility of diabetic patients to microvascular and macrovascular complications may be a function of the endogenous antioxidant status.

          Related collections

          Author and article information

          Comments

          Comment on this article