8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Discriminating age and disability effects in locomotion: neuromuscular adaptations in musculoskeletal pathology.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We identified biomechanical variables indicative of lower extremity dysfunction, distinct from age-related gait adaptations, and examined interrelationships among these variables to better understand the neuromuscular adaptations in gait. Sagittal plane ankle, knee, and hip peak angles, moments, and powers and spatiotemporal parameters were acquired during preferred-speed gait in 120 subjects: 45 healthy young, 37 healthy elders, and 38 elders with functional limitations due to lower extremity musculoskeletal pathology, primarily arthritis. Multiple analysis of covariance with discriminate analysis, adjusted for gait speed, was used to identify the variables discriminating groups. Correlation analysis was used to explore interrelationships among these variables within each group. Healthy elders were discriminated (sensitivity 76%, specificity 82%) from young adults via decreased late-stance ankle plantar flexion angle, increased late-stance knee power absorption, and early-stance hip extensor power generation. Disabled elders were discriminated (sensitivity 74%, specificity 73%) from healthy elders via decreased late-stance ankle plantar flexor moment and power generation, increased early-stance ankle dorsiflexor moment, and late-stance hip flexor moment and power absorption. Relationships among variables showed a higher degree of coupling for the disabled elders compared with the healthy groups, suggesting a reduced ability to alter motor strategies. Our data suggest that, beyond age-related changes, elders with lower extremity dysfunction rely excessively on passive action of hip flexors to provide propulsion in late stance and contralateral ankle dorsiflexors to enhance stability. These findings support a growing body of evidence that gait changes with age and disablement have a neuromuscular basis, which may be informative in a motor control framework for physical therapy interventions.

          Related collections

          Author and article information

          Journal
          J Appl Physiol (1985)
          Journal of applied physiology (Bethesda, Md. : 1985)
          American Physiological Society
          8750-7587
          0161-7567
          Jan 2004
          : 96
          : 1
          Affiliations
          [1 ] Biomotion Laboratory, Department of Orthopaedics, Massachusetts General Hospital, Boston, MA 02114, USA. cmcgibbon@partners.org
          Article
          00422.2003
          10.1152/japplphysiol.00422.2003
          12949019
          8be62bca-8ba7-4c94-baca-2518b6138bc9
          History

          Comments

          Comment on this article