22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F 2 and twenty-seven (A/J X C57BL/6J) F 2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb.

          Mutations in a conserved non-coding region in intron 5 of the Lmbr1 locus, which is 1 Mb away from the sonic hedgehog (Shh) coding sequence, are responsible for mouse and human preaxial polydactyly with mirror-image digit duplications. In the mouse mutants, ectopic Shh expression is observed in the anterior mesenchyme of limb buds. Furthermore, a transgenic reporter gene flanked with this conserved non-coding region shows normal polarized expression in mouse limb buds. This conserved sequence has therefore been proposed to act as a long-range, cis-acting regulator of limb-specific Shh expression. Previous phylogenetic studies have also shown that this sequence is highly conserved among tetrapods, and even in teleost fishes. Paired fins of teleost fishes and tetrapod limbs have evolved from common ancestral appendages, and polarized Shh expression is commonly observed in fins. In this study, we first show that this conserved sequence motif is also physically linked to the Shh coding sequence in a teleost fish, the medaka, by homology search of a newly available genomic sequence database. Next, we show that deletion of this conserved intronic sequence by targeted mutation in the mouse results in a complete loss of Shh expression in the limb bud and degeneration of skeletal elements distal to the stylopod/zygopod junction. This sequence contains a major limb-specific Shh enhancer that is necessary for distal limb development. These results suggest that the conserved intronic sequence evolved in a common ancestor of fishes and tetrapods to control fin and limb development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis.

            Niemann-Pick C1 Like 1 (NPC1L1) is a protein localized in jejunal enterocytes that is critical for intestinal cholesterol absorption. The uptake of intestinal phytosterols and cholesterol into absorptive enterocytes in the intestine is not fully defined on a molecular level, and the role of NPC1L1 in maintaining whole body cholesterol homeostasis is not known. NPC1L1 null mice had substantially reduced intestinal uptake of cholesterol and sitosterol, with dramatically reduced plasma phytosterol levels. The NPC1L1 null mice were completely resistant to diet-induced hypercholesterolemia, with plasma lipoprotein and hepatic cholesterol profiles similar to those of wild type mice treated with the cholesterol absorption inhibitor ezetimibe. Cholesterol/cholate feeding resulted in down-regulation of intestinal NPC1L1 mRNA expression in wild type mice. NPC1L1 deficiency resulted in up-regulation of intestinal hydroxymethylglutaryl-CoA synthase mRNA and an increase in intestinal cholesterol synthesis, down-regulation of ABCA1 mRNA, and no change in ABCG5 and ABCG8 mRNA expression. NPC1L1 is required for intestinal uptake of both cholesterol and phytosterols and plays a major role in cholesterol homeostasis. Thus, NPC1L1 may be a useful drug target for the treatment of hypercholesterolemia and sitosterolemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mouse as a model for human biology: a resource guide for complex trait analysis.

              The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 January 2012
                : 7
                : 1
                : e29579
                Affiliations
                [1 ]Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
                [2 ]Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
                The University of Texas Health Science Center at San Antonio, United States of America
                Author notes

                Conceived and designed the experiments: CMF LHP JS. Performed the experiments: CMF JLC JL KS XY YAL LHP JS. Analyzed the data: CMF JLC JL KS XY YAL LHP JS. Contributed reagents/materials/analysis tools: CMF JLC JL KS XY YAL LHP JS. Wrote the paper: CMF JLC JL KS XY YAL LHP JS.

                Article
                PONE-D-11-12692
                10.1371/journal.pone.0029579
                3254621
                22253740
                8bedcbcf-f328-45df-ac26-da32148b53e6
                Ferreira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 July 2011
                : 30 November 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Respiratory System
                Genetics
                Immunology
                Immunity
                Model Organisms
                Animal Models
                Molecular Cell Biology
                Medicine
                Pulmonology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article