41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Efficacy of Mdm2/Mdm4-Inhibiting Stapled Peptides Using Cellular Thermal Shift Assays

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous publications on stapled peptide inhibitors against Mdm2/Mdm4-p53 interactions have established that this new class of drugs have the potential to be easily optimised to attain high binding affinity and specificity, but the mechanisms controlling their cellular uptake and target engagement remain elusive and controversial. To aid in understanding the rules of peptide and staple design, and to enable rapid optimisation, we employed the newly-developed cellular thermal shift assay (CETSA). CETSA was able to validate stapled peptide binding to Mdm2 and Mdm4, and the method was also used to determine the extent of cellular uptake, cellular availability, and intracellular binding of the endogenous target proteins in its native environment. Our data suggest that while the stapled peptides engage their targets intracellularly, more work is needed to improve their cellular entry and target engagement efficiency in vivo. CETSA now provides a valuable tool to optimize such in vivo properties of stapled peptides.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          p53 mutations in human cancers.

          Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking cancer drugs in living cells by thermal profiling of the proteome.

            The thermal stability of proteins can be used to assess ligand binding in living cells. We have generalized this concept by determining the thermal profiles of more than 7000 proteins in human cells by means of mass spectrometry. Monitoring the effects of small-molecule ligands on the profiles delineated more than 50 targets for the kinase inhibitor staurosporine. We identified the heme biosynthesis enzyme ferrochelatase as a target of kinase inhibitors and suggest that its inhibition causes the phototoxicity observed with vemurafenib and alectinib. Thermal shifts were also observed for downstream effectors of drug treatment. In live cells, dasatinib induced shifts in BCR-ABL pathway proteins, including CRK/CRKL. Thermal proteome profiling provides an unbiased measure of drug-target engagement and facilitates identification of markers for drug efficacy and toxicity. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Awakening guardian angels: drugging the p53 pathway.

              Currently, around 11 million people are living with a tumour that contains an inactivating mutation of TP53 (the human gene that encodes p53) and another 11 million have tumours in which the p53 pathway is partially abrogated through the inactivation of other signalling or effector components. The p53 pathway is therefore a prime target for new cancer drug development, and several original approaches to drug discovery that could have wide applications to drug development are being used. In one approach, molecules that activate p53 by blocking protein-protein interactions with MDM2 are in early clinical development. Remarkable progress has also been made in the development of p53-binding molecules that can rescue the function of certain p53 mutants. Finally, cell-based assays are being used to discover compounds that exploit the p53 pathway by either seeking targets and compounds that show synthetic lethality with TP53 mutations or by looking for non-genotoxic activators of the p53 response.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 July 2015
                2015
                : 5
                : 12116
                Affiliations
                [1 ]p53 Laboratory, A*STAR , Singapore
                [2 ]Institute of Chemical and Engineering Sciences, A*STAR
                [3 ]School of Biological Sciences, Nanyang Technological University , Singapore
                Author notes
                Article
                srep12116
                10.1038/srep12116
                4498326
                26159518
                8bef738c-755d-4f21-b8eb-2957ac4ec808
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 February 2015
                : 19 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article