6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer’s Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Alzheimer’s disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease’s progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic. Recently, a molecular link was demonstrated between cholesterol oxidative metabolism and glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin system in the brain, thus reducing insulin-mediated glucose uptake, which has a major impact on brain functioning. Despite this important evidence regarding the role of 27-hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other cholesterol oxidation products that have been clearly demonstrated to be key players in AD cannot be ruled out. This review highlights the current understanding of the potential role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional crosstalk between these two phenomena.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

          Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones.

            PPAR gamma is required for fat cell development and is the molecular target of antidiabetic thiazolidinediones (TZDs), which exert insulin-sensitizing effects in adipose tissue, skeletal muscle, and liver. Unexpectedly, we found that inactivation of PPAR gamma in macrophages results in the development of significant glucose intolerance plus skeletal muscle and hepatic insulin resistance in lean mice fed a normal diet. This phenotype was associated with increased expression of inflammatory markers and impaired insulin signaling in adipose tissue, muscle, and liver. PPAR gamma-deficient macrophages secreted elevated levels of factors that impair insulin responsiveness in muscle cells in a manner that was enhanced by exposure to FFAs. Consistent with this, the relative degree of insulin resistance became more severe in mice lacking macrophage PPAR gamma following high-fat feeding, and these mice were only partially responsive to TZD treatment. These findings reveal an essential role of PPAR gamma in macrophages for the maintenance of whole-body insulin action and in mediating the antidiabetic actions of TZDs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation.

              We have investigated whether side chain-hydroxylated cholesterol species are important for elimination of cholesterol from the brain. Plasma concentrations of 24-hydroxycholesterol (24-OH-Chol) in the internal jugular vein and the brachial artery in healthy volunteers were consistent with a net flux of this steroid from the brain into the circulation, corresponding to elimination of approximately 4 mg cholesterol during a 24-h period in adults. Results of experiments with rats exposed to 18O2 were also consistent with a flux of 24-OH-Chol from the brain into the circulation. No other oxysterol measured showed a similar behavior as 24-OH-Chol. These results and the finding that the concentration of 24-OH-Chol was 30- to 1500-fold higher in the brain than in any other organ except the adrenals indicate that the major part of 24-OH-Chol present in the circulation originates from the brain. Both the 24-OH-Chol present in the brain and in the circulation were the 24S-stereoisomer. In contrast to other oxysterols, levels of plasma 24-OH-Chol were found to be markedly dependent upon age. The ratio between 24-OH-Chol and cholesterol in plasma was approximately 5 times higher during the first decade of life than during the sixth decade. There was a high correlation between levels of 24-OH-Chol in plasma and cerebrospinal fluid. It is suggested that the flux of 24-OH-Chol from the brain is important for cholesterol homeostasis in this organ.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                31 May 2019
                2019
                : 13
                : 556
                Affiliations
                Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital , Turin, Italy
                Author notes

                Edited by: Eugenio Barone, Sapienza University of Rome, Italy

                Reviewed by: Gérard Lizard, Université de Bourgogne, France; Marzia Perluigi, Sapienza University of Rome, Italy

                *Correspondence: Paola Gamba, paola.gamba@ 123456unito.it

                These authors have contributed equally to this work

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.00556
                6554318
                31213973
                8bf1f653-91dc-48ba-9867-c452f557afd8
                Copyright © 2019 Gamba, Staurenghi, Testa, Giannelli, Sottero and Leonarduzzi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 April 2019
                : 14 May 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 90, Pages: 9, Words: 0
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                alzheimer’s disease,cholesterol metabolism,oxysterols,glucose metabolism,insulin resistance,renin-angiotensin system

                Comments

                Comment on this article