11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the rechargeable lithium–sulfur battery is an advanced energy storage system, its practical implementation has been impeded by many issues, in particular the shuttle effect causing rapid capacity fade and low Coulombic efficiency. Herein, we report a conductive porous vanadium nitride nanoribbon/graphene composite accommodating the catholyte as the cathode of a lithium–sulfur battery. The vanadium nitride/graphene composite provides strong anchoring for polysulfides and fast polysulfide conversion. The anchoring effect of vanadium nitride is confirmed by experimental and theoretical results. Owing to the high conductivity of vanadium nitride, the composite cathode exhibits lower polarization and faster redox reaction kinetics than a reduced graphene oxide cathode, showing good rate and cycling performances. The initial capacity reaches 1,471 mAh g −1 and the capacity after 100 cycles is 1,252 mAh g −1 at 0.2 C, a loss of only 15%, offering a potential for use in high energy lithium–sulfur batteries.

          Abstract

          Lithium sulfur batteries are a promising next generation storage technology. Their performance, however, is subject to the parasitic shuttle effect. Here the authors report a cathode material comprising porous vanadium nitride nanoribbon and graphene to provide anchoring for polysulfides.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          A highly efficient polysulfide mediator for lithium-sulfur batteries.

          The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host--manganese dioxide nanosheets serve as the prototype--reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind 'higher' polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g(-1) at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells.

            The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Here, we use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach enabled us to obtain a uniform and thin (around tens of nanometers) sulfur coating on graphene oxide sheets by a simple chemical reaction-deposition strategy and a subsequent low-temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides enabled us to demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mA h g(-1), and stable cycling for more than 50 deep cycles at 0.1C (1C = 1675 mA g(-1)).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.

              Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li(2)S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO(3) additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                03 March 2017
                2017
                : 8
                : 14627
                Affiliations
                [1 ]Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016, China
                [2 ]Tsinghua-Berkeley Shenzhen Institute, Tsinghua University , Shenzhen 518055, China
                Author notes
                Article
                ncomms14627
                10.1038/ncomms14627
                5337987
                28256504
                8c01901c-bb67-47a0-8180-7925748e1b74
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 July 2016
                : 17 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article