28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells

      research-article
      1 , 2 , 1 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular beacons: probes that fluoresce upon hybridization.

          We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies.

              The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.
                Bookmark

                Author and article information

                Contributors
                snow.stolnik@nottingham.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 February 2018
                28 February 2018
                2018
                : 8
                : 3748
                Affiliations
                [1 ]ISNI 0000 0004 1936 8868, GRID grid.4563.4, Division of Molecular Therapeutics and Formulation, School of Pharmacy, , University of Nottingham, ; Nottingham, NG7 2RD UK
                [2 ]ISNI 0000 0004 1936 8868, GRID grid.4563.4, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, , University of Nottingham, ; Nottingham, NG7 2RD UK
                Author information
                http://orcid.org/0000-0003-1507-921X
                http://orcid.org/0000-0002-2345-5062
                Article
                22166
                10.1038/s41598-018-22166-3
                5830644
                29491352
                8c02831b-ab18-4b73-92f2-95d6b86e66e7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 November 2017
                : 19 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article