28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K + channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to elucidate the underlying mechanism. Mice were exposed to either 21% (control) or 18% (mild hypoxia) oxygen for 24 h. Exposure to 18% oxygen did not affect partial pressure of O 2 (PO 2) and CO 2 (PCO 2) in the blood, haematocrit or level of ATP in the heart. However, hypoxia increased myocardial lactate dehydrogenase (LDH) and lactate as well as NAD + without affecting total NAD. SUR2A levels were significantly increased as well as myocardial resistance to ischaemia–reperfusion. Exposure to 18% oxygen did not phosphorylate extracellular signal regulated kinases (ERK1/2) or AMP activated protein kinase (AMPK), but it phosphorylated protein kinase B (Akt). An inhibitor of phosphoinositide 3-kinases (PI3K), LY294002 (0.2 mg/mouse), abolished all observed effects of hypoxia. LDH inhibitors, galloflavin (50 μM) and sodium oxamate (80 mM) significantly decreased levels of SUR2A in heart embryonic H9c2 cells, while inactive mutant LDH form, gly193-M-LDH increased cellular sensitivity towards stress induced by 2,4-dinitrophenol (10 mM). Treatment of H9c2 cells with sodium lactate (30 mM) increased intracellular lactate, but did not affect LDH activity or SUR2A levels. We conclude that PI3K/Akt signalling pathway and LDH play a crucial role in increase of cardiac SUR2A induced by in vivo exposure to 18% oxygen.

          Highlights

          • Mild hypoxia increases levels of cardioprotective SUR2A in the heart.

          • Phosphorylation of Akt mediates mild hypoxia-induced increase in SUR2A.

          • Phosphorylation of ERK1/2 and AMPK is not involved in observed increase in SUR2A.

          • PI3K/Akt target LDH to regulate SUR2A levels in the myocardium.

          • LDH mediates regulation of SUR2A in a lactate-independent manner.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).

          Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Survival kinases in ischemic preconditioning and postconditioning.

            Despite nearly twenty years of research into the field of ischemic preconditioning, the actual mechanism of protection remains unclear. However, much progress has been made in elucidating the signal transduction pathways that convey the extracellular signal initiated by the preconditioning stimulus to the intracellular targets of cardioprotection, with many of these pathways involving the activation of a diverse array of survival protein kinase cascades. The powerful protective benefits of ischemic preconditioning have not yet been realised in the clinical arena, not least because of the prerequisite for any preconditioning intervention to be applied prior to the onset of index ischemia, which in the case of an acute myocardial infarction is difficult to institute. In this regard, the newly described phenomenon of ischemic postconditioning, which comprises a cardioprotective intervention that can be applied at the time of myocardial reperfusion, offers a far more attractive and amenable approach to myocardial protection. Interestingly, certain survival protein kinase cascades recruited at the time of myocardial reperfusion appear to be shared by both ischemic preconditioning and postconditioning, thereby offering a potentially common target of cardioprotection. The often disputed roles these different protein kinases play in mediating the cardioprotective effects of ischemic preconditioning and postconditioning are reviewed in this article, and include protein kinases C, G, and A, members of the MAPK family (Erk1/2, p38, JNK and BMK1), the PI3K-Akt cascade, and the JAK-STAT pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland.

              Studies assessing the effect of altitude on cardiovascular disease have provided conflicting results. Most studies were limited because of the heterogeneity of the population, their ecological design, or both. In addition, effects of place of birth were rarely considered. Here, we examine mortality from coronary heart disease and stroke in relation to the altitude of the place of residence in 1990 and at birth. Mortality data from 1990 to 2000, sociodemographic information, and places of birth and residence in 1990 (men and women between 40 and 84 years of age living at altitudes of 259 to 1960 m) were obtained from the Swiss National Cohort, a longitudinal, census-based record linkage study. The 1.64 million German Swiss residents born in Switzerland provided 14.5 million person-years. Relative risks were calculated with multivariable Poisson regression. Mortality from coronary heart disease (-22% per 1000 m) and stroke (-12% per 1000 m) significantly decreased with increasing altitude. Being born at altitudes higher or lower than the place of residence was associated with lower or higher risk. The protective effect of living at higher altitude on coronary heart disease and stroke mortality was consistent and became stronger after adjustment for potential confounders. Being born at high altitude had an additional and independent beneficial effect on coronary heart disease mortality. The effect is unlikely to be due to classic cardiovascular disease risk factors and rather could be explained by factors related to climate.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biochim Biophys Acta
                Biochim. Biophys. Acta
                Biochimica et Biophysica Acta
                Elsevier Pub. Co
                0006-3002
                1 May 2015
                May 2015
                : 1852
                : 5
                : 709-719
                Affiliations
                Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
                Author notes
                [* ]Corresponding author. Tel.: + 44 1382 383 276; fax: + 44 1382 383 598. a.jovanovic@ 123456dundee.ac.uk
                Article
                S0925-4439(15)00002-2
                10.1016/j.bbadis.2015.01.001
                4547089
                25576887
                8c097d71-7f85-4c81-92a5-8f50b66110cc
                © 2015 The Authors. Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 September 2014
                : 19 December 2014
                : 1 January 2015
                Categories
                Article

                Biochemistry
                hypoxia,ldh,oxygen,sur2a,heart,akt
                Biochemistry
                hypoxia, ldh, oxygen, sur2a, heart, akt

                Comments

                Comment on this article