Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA-ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. The helical filaments have been proposed to play a role in both of the key mechanical tasks, but recent studies raise new questions about whether they are mandatory for orisome activity. It was recently shown that a version of E. coli oriC ( oriC allADP ), whose multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, despite their functional equivalency, orisomes assembled on oriC allADP were unable to trigger chromosome replication at the correct cell cycle time and displayed a hyper-initiation phenotype. Here we present a new perspective on DnaA-ATP, and suggest that in E. coli, DnaA-ATP is not required for mechanical functions, but rather is needed for site recognition and occupation, so that initiation timing is coupled to DnaA-ATP levels. We also discuss how other bacterial types may utilize DnaA-ATP and DnaA-ADP, and whether the high diversity of replication origins in the bacterial world reflects different regulatory strategies for how DnaA-ATP is used to control orisome assembly.

          Related collections

          Most cited references 101

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary history and higher order classification of AAA+ ATPases.

          The AAA+ ATPases are enzymes containing a P-loop NTPase domain, and function as molecular chaperones, ATPase subunits of proteases, helicases or nucleic-acid-stimulated ATPases. All available sequences and structures of AAA+ protein domains were compared with the aim of identifying the definitive sequence and structure features of these domains and inferring the principal events in their evolution. An evolutionary classification of the AAA+ class was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of 26 major families within the AAA+ ATPase class. We also describe the position of the AAA+ ATPases with respect to the RecA/F1, helicase superfamilies I/II, PilT, and ABC classes of P-loop NTPases. The AAA+ class appears to have undergone an early radiation into the clamp-loader, DnaA/Orc/Cdc6, classic AAA, and "pre-sensor 1 beta-hairpin" (PS1BH) clades. Within the PS1BH clade, chelatases, MoxR, YifB, McrB, Dynein-midasin, NtrC, and MCMs form a monophyletic assembly defined by a distinct insert in helix-2 of the conserved ATPase core, and additional helical segment between the core ATPase domain and the C-terminal alpha-helical bundle. At least 6 distinct AAA+ proteins, which represent the different major clades, are traceable to the last universal common ancestor (LUCA) of extant cellular life. Additionally, superfamily III helicases, which belong to the PS1BH assemblage, were probably present at this stage in virus-like "selfish" replicons. The next major radiation, at the base of the two prokaryotic kingdoms, bacteria and archaea, gave rise to several distinct chaperones, ATPase subunits of proteases, DNA helicases, and transcription factors. The third major radiation, at the outset of eukaryotic evolution, contributed to the origin of several eukaryote-specific adaptations related to nuclear and cytoskeletal functions. The new relationships and previously undetected domains reported here might provide new leads for investigating the biology of AAA+ ATPases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chromosome replication and the division cycle of Escherichia coli B/r.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC.

              Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                29 August 2019
                2019
                : 10
                Affiliations
                1Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology , Melbourne, FL, United States
                2Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, TN, United States
                Author notes

                Edited by: Ludmila Chistoserdova, University of Washington, United States

                Reviewed by: Anders Løbner-Olesen, University of Copenhagen, Denmark; Gregory Marczynski, McGill University, Canada

                *Correspondence: Alan C. Leonard, aleonard@ 123456fit.edu

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.02009
                6727663
                Copyright © 2019 Leonard, Rao, Kadam and Grimwade.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 103, Pages: 12, Words: 0
                Funding
                Funded by: National Institute of General Medical Sciences 10.13039/100000057
                Award ID: GM54042
                Categories
                Microbiology
                Review

                Comments

                Comment on this article