52
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Caring for patients with pain during the COVID‐19 pandemic: consensus recommendations from an international expert panel

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Chronic pain causes significant suffering, limitation of daily activities and reduced quality of life. Infection from COVID‐19 is responsible for an ongoing pandemic that causes severe acute respiratory syndrome, leading to systemic complications and death. Led by the World Health Organization, healthcare systems across the world are engaged in limiting the spread of infection. As a result, all elective surgical procedures, outpatient procedures and patient visits, including pain management services, have been postponed or cancelled. This has affected the care of chronic pain patients. Most are elderly with multiple comorbidities, which puts them at risk of COVID‐19 infection. Important considerations that need to be recognised during this pandemic for chronic pain patients include: ensuring continuity of care and pain medications, especially opioids; use of telemedicine; maintaining biopsychosocial management; use of anti‐inflammatory drugs; use of steroids; and prioritising necessary procedural visits. There are no guidelines to inform physicians and healthcare providers engaged in caring for patients with pain during this period of crisis. We assembled an expert panel of pain physicians, psychologists and researchers from North America and Europe to formulate recommendations to guide practice. As the COVID‐19 situation continues to evolve rapidly, these recommendations are based on the best available evidence and expert opinion at this present time and may need adapting to local workplace policies.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China

            China and the rest of the world are experiencing an outbreak of a novel betacoronavirus known as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). 1 By Feb 12, 2020, the rapid spread of the virus had caused 42 747 cases and 1017 deaths in China and cases have been reported in 25 countries, including the USA, Japan, and Spain. WHO has declared 2019 novel coronavirus disease (COVID-19), caused by SARS-CoV-2, a public health emergency of international concern. In contrast to severe acute respiratory system coronavirus and Middle East respiratory syndrome coronavirus, more deaths from COVID-19 have been caused by multiple organ dysfunction syndrome rather than respiratory failure, 2 which might be attributable to the widespread distribution of angiotensin converting enzyme 2—the functional receptor for SARS-CoV-2—in multiple organs.3, 4 Patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments, such as chemotherapy or surgery.5, 6, 7, 8 Therefore, these patients might be at increased risk of COVID-19 and have a poorer prognosis. On behalf of the National Clinical Research Center for Respiratory Disease, we worked together with the National Health Commission of the People's Republic of China to establish a prospective cohort to monitor COVID-19 cases throughout China. As of the data cutoff on Jan 31, 2020, we have collected and analysed 2007 cases from 575 hospitals (appendix pp 4–9 for a full list) in 31 provincial administrative regions. All cases were diagnosed with laboratory-confirmed COVID-19 acute respiratory disease and were admitted to hospital. We excluded 417 cases because of insufficient records of previous disease history. 18 (1%; 95% CI 0·61–1·65) of 1590 COVID-19 cases had a history of cancer, which seems to be higher than the incidence of cancer in the overall Chinese population (285·83 [0·29%] per 100 000 people, according to 2015 cancer epidemiology statistics 9 ). Detailed information about the 18 patients with cancer with COVID-19 is summarised in the appendix (p 1). Lung cancer was the most frequent type (five [28%] of 18 patients). Four (25%) of 16 patients (two of the 18 patients had unknown treatment status) with cancer with COVID-19 had received chemotherapy or surgery within the past month, and the other 12 (25%) patients were cancer survivors in routine follow-up after primary resection. Compared with patients without cancer, patients with cancer were older (mean age 63·1 years [SD 12·1] vs 48·7 years [16·2]), more likely to have a history of smoking (four [22%] of 18 patients vs 107 [7%] of 1572 patients), had more polypnea (eight [47%] of 17 patients vs 323 [23%] of 1377 patients; some data were missing on polypnea), and more severe baseline CT manifestation (17 [94%] of 18 patients vs 1113 [71%] of 1572 patients), but had no significant differences in sex, other baseline symptoms, other comorbidities, or baseline severity of x-ray (appendix p 2). Most importantly, patients with cancer were observed to have a higher risk of severe events (a composite endpoint defined as the percentage of patients being admitted to the intensive care unit requiring invasive ventilation, or death) compared with patients without cancer (seven [39%] of 18 patients vs 124 [8%] of 1572 patients; Fisher's exact p=0·0003). We observed similar results when the severe events were defined both by the above objective events and physician evaluation (nine [50%] of 18 patients vs 245 [16%] of 1572 patients; Fisher's exact p=0·0008). Moreover, patients who underwent chemotherapy or surgery in the past month had a numerically higher risk (three [75%] of four patients) of clinically severe events than did those not receiving chemotherapy or surgery (six [43%] of 14 patients; figure ). These odds were further confirmed by logistic regression (odds ratio [OR] 5·34, 95% CI 1·80–16·18; p=0·0026) after adjusting for other risk factors, including age, smoking history, and other comorbidities. Cancer history represented the highest risk for severe events (appendix p 3). Among patients with cancer, older age was the only risk factor for severe events (OR 1·43, 95% CI 0·97–2·12; p=0·072). Patients with lung cancer did not have a higher probability of severe events compared with patients with other cancer types (one [20%] of five patients with lung cancer vs eight [62%] of 13 patients with other types of cancer; p=0·294). Additionally, we used a Cox regression model to evaluate the time-dependent hazards of developing severe events, and found that patients with cancer deteriorated more rapidly than those without cancer (median time to severe events 13 days [IQR 6–15] vs 43 days [20–not reached]; p<0·0001; hazard ratio 3·56, 95% CI 1·65–7·69, after adjusting for age; figure). Figure Severe events in patients without cancer, cancer survivors, and patients with cancer (A) and risks of developing severe events for patients with cancer and patients without cancer (B) ICU=intensive care unit. In this study, we analysed the risk for severe COVID-19 in patients with cancer for the first time, to our knowledge; only by nationwide analysis can we follow up patients with rare but important comorbidities, such as cancer. We found that patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Additionally, we showed that patients with cancer had poorer outcomes from COVID-19, providing a timely reminder to physicians that more intensive attention should be paid to patients with cancer, in case of rapid deterioration. Therefore, we propose three major strategies for patients with cancer in this COVID-19 crisis, and in future attacks of severe infectious diseases. First, an intentional postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered in endemic areas. Second, stronger personal protection provisions should be made for patients with cancer or cancer survivors. Third, more intensive surveillance or treatment should be considered when patients with cancer are infected with SARS-CoV-2, especially in older patients or those with other comorbidities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status

              An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Professorshanthh@mcmaster.ca , https://twitter.com/@harshamd5
                Role: Assistant Professor
                Role: President
                Role: Consultanthttps://twitter.com/@claralexlobo
                Role: Professor
                Role: Associate Professor and Staff
                Role: Consultant
                Role: Clinical Psychologist
                Role: Professor
                Role: Professorhttps://twitter.com/@NarouzeMD
                Journal
                Anaesthesia
                Anaesthesia
                10.1111/(ISSN)1365-2044
                ANAE
                Anaesthesia
                John Wiley and Sons Inc. (Hoboken )
                0003-2409
                1365-2044
                26 April 2020
                : 10.1111/anae.15076
                Affiliations
                [ 1 ] Department of Anesthesia McMaster University ON Canada
                [ 2 ] Division of Pain Medicine Mayo Clinic Alix School of Medicine Phoenix AZ USA
                [ 3 ] Pain Diagnostics and Interventional Care Sewickley PA USA
                [ 4 ] Department of Anaesthesiology Hospital das Forças Armadas Pólo Porto Portugal
                [ 5 ] Department of Pain Medicine James Cook University Hospital Middlesbrough UK
                [ 6 ] Comprehensive Integrated Pain Program‐Interventional Pain Service Department of Anesthesia and Pain Medicine University of Toronto and Toronto Western Hospital Toronto ON Canada
                [ 7 ] Department of Anesthesiology Sint Maartenskliniek Nijmegen The Netherlands
                [ 8 ] Comprehensive Integrated Pain Program‐Interventional Pain Service Department of Anesthesia and Pain Medicine Toronto Western Hospital Toronto ON Canada
                [ 9 ] Department of Anesthesiology and Critical Care Medicine, Neurology and Physical Medicine and Rehabilitation Johns Hopkins School of Medicine Baltimore MD USA
                [ 10 ] Northeast Ohio Medical University and Chairman Center for Pain Medicine Western Reserve Hospital Cuyahoga Falls OH USA
                Author notes
                [*] [* ] Correspondence to: H. Shanthanna

                Email: shanthh@ 123456mcmaster.ca

                Article
                ANAE15076
                10.1111/anae.15076
                7262200
                32259288
                8c1c5edd-b56d-4292-a2fd-b30ee23b4da1
                © 2020 Association of Anaesthetists

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 05 April 2020
                Page count
                Figures: 1, Tables: 1, Pages: 10, Words: 6814
                Funding
                Funded by: Canadian Anesthesia Research Foundation , open-funder-registry 10.13039/100007481;
                Funded by: National Institute of Health Research (NIHR)
                Funded by: Nevro
                Funded by: Medtronic , open-funder-registry 10.13039/100004374;
                Funded by: MIRROR
                Funded by: U.S. Department of Defense , open-funder-registry 10.13039/100000005;
                Funded by: Uniformed Services University , open-funder-registry 10.13039/100007188;
                Funded by: National Institutes of Health , open-funder-registry 10.13039/100000002;
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.3 mode:remove_FC converted:01.06.2020

                Anesthesiology & Pain management
                chronic pain,covid‐19,opioids,recommendations,steroids
                Anesthesiology & Pain management
                chronic pain, covid‐19, opioids, recommendations, steroids

                Comments

                Comment on this article