Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Effect of Dimethyl Fumarate on Cerebral Gray Matter Atrophy in Multiple Sclerosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The objective of this pilot study was to compare cerebral gray matter (GM) atrophy over 1 year in patients starting dimethyl fumarate (DMF) for multiple sclerosis (MS) to that of patients on no disease-modifying treatment (noDMT). DMF is an established therapy for relapsing–remitting (RR) MS.

          Methods

          We retrospectively analyzed 20 patients with RRMS at the start of DMF [age (mean ± SD) 46.1 ± 10.2 years, Expanded Disability Status Scale (EDSS) score 1.1 ± 1.2, timed 25-foot walk (T25FW) 4.6 ± 0.8 s] and eight patients on noDMT (age 42.5 ± 6.6 years, EDSS 1.7 ± 1.1, T25FW 4.4 ± 0.6 s). Baseline and 1-year 3D T1-weighted 3T MRI was processed with automated pipelines (SIENA, FSL-FIRST) to assess percentage whole brain volume change (PBVC) and deep GM (DGM) atrophy. Group differences were assessed by analysis of covariance, with time between MRI scans as a covariate.

          Results

          Over 1 year, the DMF group showed a lower rate of whole brain atrophy than the noDMT group (PBVC: −0.37 ± 0.49% vs. −1.04 ± 0.67%, p = 0.005). The DMF group also had less change in putamen volume (−0.06 ± 0.22 vs. −0.32 ± 0.28 ml, p = 0.02). There were no significant on-study differences between groups in caudate, globus pallidus, thalamus, total DGM volume, T2 lesion volume, EDSS, or T25FW (all p > 0.20).

          Conclusions

          These results suggest a treatment effect of DMF on GM atrophy appearing at 1 year after starting therapy. However, due to the retrospective study design and sample size, these findings should be considered preliminary, and require confirmation in future investigations.

          Funding

          Biogen.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.

          Oral fingolimod, a sphingosine-1-phosphate-receptor modulator that prevents the egress of lymphocytes from lymph nodes, significantly improved relapse rates and end points measured on magnetic resonance imaging (MRI), as compared with either placebo or intramuscular interferon beta-1a, in phase 2 and 3 studies of multiple sclerosis. In our 24-month, double-blind, randomized study, we enrolled patients who had relapsing-remitting multiple sclerosis, were 18 to 55 years of age, had a score of 0 to 5.5 on the Expanded Disability Status Scale (which ranges from 0 to 10, with higher scores indicating greater disability), and had had one or more relapses in the previous year or two or more in the previous 2 years. Patients received oral fingolimod at a dose of 0.5 mg or 1.25 mg daily or placebo. End points included the annualized relapse rate (the primary end point) and the time to disability progression (a secondary end point). A total of 1033 of the 1272 patients (81.2%) completed the study. The annualized relapse rate was 0.18 with 0.5 mg of fingolimod, 0.16 with 1.25 mg of fingolimod, and 0.40 with placebo (P<0.001 for either dose vs. placebo). Fingolimod at doses of 0.5 mg and 1.25 mg significantly reduced the risk of disability progression over the 24-month period (hazard ratio, 0.70 and 0.68, respectively; P=0.02 vs. placebo, for both comparisons). The cumulative probability of disability progression (confirmed after 3 months) was 17.7% with 0.5 mg of fingolimod, 16.6% with 1.25 mg of fingolimod, and 24.1% with placebo. Both fingolimod doses were superior to placebo with regard to MRI-related measures (number of new or enlarged lesions on T(2)-weighted images, gadolinium-enhancing lesions, and brain-volume loss; P<0.001 for all comparisons at 24 months). Causes of study discontinuation and adverse events related to fingolimod included bradycardia and atrioventricular conduction block at the time of fingolimod initiation, macular edema, elevated liver-enzyme levels, and mild hypertension. As compared with placebo, both doses of oral fingolimod improved the relapse rate, the risk of disability progression, and end points on MRI. These benefits will need to be weighed against possible long-term risks. (ClinicalTrials.gov number, NCT00289978.) Copyright 2010 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Bayesian model of shape and appearance for subcortical brain segmentation.

            Automatic segmentation of subcortical structures in human brain MR images is an important but difficult task due to poor and variable intensity contrast. Clear, well-defined intensity features are absent in many places along typical structure boundaries and so extra information is required to achieve successful segmentation. A method is proposed here that uses manually labelled image data to provide anatomical training information. It utilises the principles of the Active Shape and Appearance Models but places them within a Bayesian framework, allowing probabilistic relationships between shape and intensity to be fully exploited. The model is trained for 15 different subcortical structures using 336 manually-labelled T1-weighted MR images. Using the Bayesian approach, conditional probabilities can be calculated easily and efficiently, avoiding technical problems of ill-conditioned covariance matrices, even with weak priors, and eliminating the need for fitting extra empirical scaling parameters, as is required in standard Active Appearance Models. Furthermore, differences in boundary vertex locations provide a direct, purely local measure of geometric change in structure between groups that, unlike voxel-based morphometry, is not dependent on tissue classification methods or arbitrary smoothing. In this paper the fully-automated segmentation method is presented and assessed both quantitatively, using Leave-One-Out testing on the 336 training images, and qualitatively, using an independent clinical dataset involving Alzheimer's disease. Median Dice overlaps between 0.7 and 0.9 are obtained with this method, which is comparable or better than other automated methods. An implementation of this method, called FIRST, is currently distributed with the freely-available FSL package. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis.

              BG-12 (dimethyl fumarate) was shown to have antiinflammatory and cytoprotective properties in preclinical experiments and to result in significant reductions in disease activity on magnetic resonance imaging (MRI) in a phase 2, placebo-controlled study involving patients with relapsing-remitting multiple sclerosis. We conducted a randomized, double-blind, placebo-controlled phase 3 study involving patients with relapsing-remitting multiple sclerosis. Patients were randomly assigned to receive oral BG-12 at a dose of 240 mg twice daily, BG-12 at a dose of 240 mg three times daily, or placebo. The primary end point was the proportion of patients who had a relapse by 2 years. Other end points included the annualized relapse rate, the time to confirmed progression of disability, and findings on MRI. The estimated proportion of patients who had a relapse was significantly lower in the two BG-12 groups than in the placebo group (27% with BG-12 twice daily and 26% with BG-12 thrice daily vs. 46% with placebo, P<0.001 for both comparisons). The annualized relapse rate at 2 years was 0.17 in the twice-daily BG-12 group and 0.19 in the thrice-daily BG-12 group, as compared with 0.36 in the placebo group, representing relative reductions of 53% and 48% with the two BG-12 regimens, respectively (P<0.001 for the comparison of each BG-12 regimen with placebo). The estimated proportion of patients with confirmed progression of disability was 16% in the twice-daily BG-12 group, 18% in the thrice-daily BG-12 group, and 27% in the placebo group, with significant relative risk reductions of 38% with BG-12 twice daily (P=0.005) and 34% with BG-12 thrice daily (P=0.01). BG-12 also significantly reduced the number of gadolinium-enhancing lesions and of new or enlarging T(2)-weighted hyperintense lesions (P<0.001 for the comparison of each BG-12 regimen with placebo). Adverse events associated with BG-12 included flushing and gastrointestinal events, such as diarrhea, nausea, and upper abdominal pain, as well as decreased lymphocyte counts and elevated liver aminotransferase levels. In patients with relapsing-remitting multiple sclerosis, both BG-12 regimens, as compared with placebo, significantly reduced the proportion of patients who had a relapse, the annualized relapse rate, the rate of disability progression, and the number of lesions on MRI. (Funded by Biogen Idec; DEFINE ClinicalTrials.gov number, NCT00420212.).
                Bookmark

                Author and article information

                Contributors
                rbakshi@post.harvard.edu
                Journal
                Neurol Ther
                Neurol Ther
                Neurology and Therapy
                Springer Healthcare (Cheshire )
                2193-8253
                2193-6536
                15 October 2016
                15 October 2016
                December 2016
                : 5
                : 2
                : 215-229
                Affiliations
                [1 ]Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
                [2 ]Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
                [3 ]Departments of Neurology and Radiology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
                Article
                54
                10.1007/s40120-016-0054-4
                5130921
                27744504
                © The Author(s) 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100005614, Biogen;
                Categories
                Original Research
                Custom metadata
                © Springer Healthcare 2016

                Comments

                Comment on this article