34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA-155 (miR-155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre-miR-155, anti-miR-155 or control-miR (ctrl-miR), followed by scratch- and transwell- assays. These functional assays displayed that miR-155 over-expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR-155 transfected cells was collected and zymography analysis showed a significant decrease in MMP-2 and MMP-9 activities. The predicted 3′-UTR of MMP-16, an activator of MMP-2 and -9, was cloned into the pMIR-REPORT vector and luciferase assays were performed. Introduction of miR-155 significantly reduced luciferase activity which could be abolished by cotransfection with anti-miR-155 or target site mutagenesis. By using MMP-16 siRNA to reduce MMP-16 levels or by using an MMP-16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP-16, miR-155 efficiently inhibits cell migration via a reduction in MMP-2 and -9 activities. Our study shows that miR-155 might be used to improve local retention of hCMPCs after intramyocardial delivery.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.

          The myocardium of the failing heart undergoes a number of structural alterations, most notably hypertrophy of cardiac myocytes and an increase in extracellular matrix proteins, often seen as primary fibrosis. Connective tissue growth factor (CTGF) is a key molecule in the process of fibrosis and therefore seems an attractive therapeutic target. Regulation of CTGF expression at the promoter level has been studied extensively, but it is unknown how CTGF transcripts are regulated at the posttranscriptional level. Here we provide several lines of evidence to show that CTGF is importantly regulated by 2 major cardiac microRNAs (miRNAs), miR-133 and miR-30. First, the expression of both miRNAs was inversely related to the amount of CTGF in 2 rodent models of heart disease and in human pathological left ventricular hypertrophy. Second, in cultured cardiomyocytes and fibroblasts, knockdown of these miRNAs increased CTGF levels. Third, overexpression of miR-133 or miR-30c decreased CTGF levels, which was accompanied by decreased production of collagens. Fourth, we show that CTGF is a direct target of these miRNAs, because they directly interact with the 3' untranslated region of CTGF. Taken together, our results indicate that miR-133 and miR-30 importantly limit the production of CTGF. We also provide evidence that the decrease of these 2 miRNAs in pathological left ventricular hypertrophy allows CTGF levels to increase, which contributes to collagen synthesis. In conclusion, our results show that both miR-133 and miR-30 directly downregulate CTGF, a key profibrotic protein, and thereby establish an important role for these miRNAs in the control of structural changes in the extracellular matrix of the myocardium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.

            Transforming growth factor beta (TGF-beta) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-beta-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray library, a total of 28 miRNAs were found to be significantly deregulated in TGF-beta-treated normal murine mammary gland (NMuMG) epithelial cells but not Smad4 knockdown NMuMG cells. Among upregulated miRNAs, miR-155 was the most significantly elevated miRNA. TGF-beta induces miR-155 expression and promoter activity through Smad4. The knockdown of miR-155 suppressed TGF-beta-induced epithelial-mesenchymal transition (EMT) and tight junction dissolution, as well as cell migration and invasion. Further, the ectopic expression of miR-155 reduced RhoA protein and disrupted tight junction formation. Reintroducing RhoA cDNA without the 3' untranslated region largely reversed the phenotype induced by miR-155 and TGF-beta. In addition, elevated levels of miR-155 were frequently detected in invasive breast cancer tissues. These data suggest that miR-155 may play an important role in TGF-beta-induced EMT and cell migration and invasion by targeting RhoA and indicate that it is a potential therapeutic target for breast cancer intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors.

              Human pluripotent stem cells offer promise for use in cell-based therapies for brain injury and diseases. However, their cellular behavior is poorly understood. Here we show that the expression of the brain-specific microRNA-9 (miR-9) is turned on in human neural progenitor cells (hNPCs) derived from human embryonic stem cells. Loss of miR-9 suppressed proliferation but promoted migration of hNPCs cultured in vitro. hNPCs without miR-9 activity also showed enhanced migration when transplanted into mouse embryonic brains or adult brains of a mouse model of stroke. These effects were not due to precocious differentiation of hNPCs. One of the key targets directly regulated by miR-9 encodes stathmin, which increases microtubule instability and whose expression in hNPCs correlates inversely with that of miR-9. Partial inhibition of stathmin activity suppressed the effects of miR-9 loss on proliferation and migration of human or embryonic rat neural progenitors. These results identify miR-9 as a novel regulator that coordinates the proliferation and migration of hNPCs. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                October 2012
                26 September 2012
                : 16
                : 10
                : 2379-2386
                Affiliations
                [a ]Department of Endocrinology, Provincial Hospital affiliated to Shandong University Jinan, China
                [b ]Department of Cardiology, University Medical Center Utrecht, the Netherlands
                [c ]Interuniversity Cardiology Institute of the Netherlands (ICIN) Utrecht, the Netherlands
                [d ]Biomedical NMR Department of Biomedical Engineering, Eindhoven University of Technology the Netherlands
                Author notes
                *Correspondence to: Joost P.G. SLUIJTER, University Medical Center Utrecht, Department of Cardiology, DH&L, Experimental Cardiology Laboratory, Heidelberglaan 100, room G02.523 3584 CX Utrecht, the Netherlands. Tel.: +31 88 755 7155 Fax: +31 30 252 2693 E-mail: j.sluijter@ 123456umcutrecht.nl
                [#]

                These authors contributed equally to this paper.

                Article
                10.1111/j.1582-4934.2012.01551.x
                3823431
                22348515
                8c2a0204-ec66-408b-99c2-8eb57a44b4f1
                Copyright © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 21 July 2011
                : 03 February 2012
                Categories
                Original Articles

                Molecular medicine
                cardiomyocyte progenitor cells,microrna,cell migration,matrix metalloproteinases

                Comments

                Comment on this article